The answer is 11/36
2/12 chance of rolling fours
because there are 2 sides containing a four on both dice combined and 12 sides in total.
Doubles mean you have to roll the same number simultaneously so let’s say we want to calculate the probability for double ones: then it’s 1/6 on the first dice for a one, and 1/6 on the second dice to land on a one as well.
I personally like to imagine a box like this:
_ _ _ _ _ _
|
|
|
|
|
|
If you have one dice then it’s just a random segment on one of the lines. If you want the specific result from two dice then you want two specific segments which is also the 1 specific tile out of 36 (6 width times 6 height). So you multiply.
1/6 * 1/6 = 1/36 chance to roll double of ones
And 1/36 chance to roll double twos, threes, fours, fives, and sixes. But we don’t count the double fours because any four will do. So:
1/36 * 5 = 5/36
So for the probability of either doubles or containing a four is the probability of doubles of either number plus the probability of either dice being a four:
5/36 + 2/12 =
5/36 + 6/36 =
11/36
From the second:
2x-y=4
x=(4+y)/2 and applying this to first:
4+y+3y=12
4y+4=12
4y=8
y=2 and since x=(4+y)/2, x=3 so
x+y=2+3=5
Answer:
AAS method can be used to prove that the two triangles are congruent.
Step-by-step explanation:
According to the question for the two triangles one pair of opposite angles are equal. One another pair of angles are equal for the two and one pair of sides are also equal of the two.
Hence, the two given triangles are congruent by AAS rule.
Hence, AAS method can be used to prove that the two triangles are congruent.
Answer:
-6.95 x 10^10
Step-by-step explanation:
Answer:
SAS
Step-by-step explanation: