Answer: Acceleration = 5m/s^2; Distance traveled = 320 m
Explanation:
Velocity of car = 40m/s
Time taken = 8 seconds
Acceleration = ?
Distance traveled = ?
A) Since acceleration is the rate of change of velocity per unit time
i.e acceleration = velocity / time
acceleration = 40m/s / 8 seconds
Acceleration = 5m/s^2
B) To get how far the car traveled before stopping, obtain the distance from the formula:
velocity = distance traveled / time
40m/s = distance / 8 seconds
Distance = 40m/s x 8 seconds
Distance = 320 m
Thus, the car’s acceleration is 5m/s^2 while it traveled 320 metres before stopping.
Answer:
The force that you must exert on the balloon is 1.96 N
Explanation:
Given;
height of water, h = 4.00 cm = 4 x 10⁻² m
effective area, A = 50.0 cm² = 50 x 10⁻⁴ m²
density of water, ρ = 1 x 10³ kg/m³
Gauge pressure of the balloon is calculated as;
P = ρgh
where;
ρ is density of water
g is acceleration due to gravity
h is height of water
P = 1 x 10³ x 9.8 x 4 x 10⁻²
P = 392 N/m²
The force exerted on the balloon is calculated as;
F = PA
where;
P is pressure of the balloon
A is the effective area
F = 392 x 50 x 10⁻⁴
F = 1.96 N
Therefore, the force that you must exert on the balloon is 1.96 N
Answer:
The correct answer is option A: they are isotopes.
Explanation:
From atom X we know that the number of protons is 7 and the number of neutrons is 7 and from atom Z we know that the number of protons is 7 and the number of neutrons is 8.
Since the number of protons of atom X and atom Z is the same, we have that atom X and atom Z is the same element. The difference in the number of neutrons tells us that atom X and atom Z are isotopes. Remember that an isotope is one element that has atoms with different numbers of neutrons.
The mass number is given by:
Where <em>n</em> is the number of neutrons and <em>p </em>is the number of protons.
For atom X and atom Z we have:

Hence, they have a different mass number.
We know that the element with 7 protons is nitrogen. The first isotope is
and the second isotope is
. Both isotopes are stables (they are not radioactive).
Therefore, the correct answer is option A: they are isotopes.
I hope it helps you!
Blue light can knock electrons off a plate, but red light can't
Some examples of projective tests are the Rorschach Inkblot Test, the Thematic Apperception Test (TAT), the Contemporized-Themes Concerning Blacks test, the TEMAS (Tell-Me-A-Story), and the Rotter Incomplete Sentence Blank (RISB).
Some examples of projective tests are the Rorschach Inkblot Test, the Thematic Apperception Test (TAT), the Contemporized-Themes Concerning Blacks test, the TEMAS (Tell-Me-A-Story), and the Rotter Incomplete Sentence Blank (RISB).