Answer:
v = 1.28 m/s
Explanation:
Given that,
Maximum compression of the spring, 
Spring constant, k = 800 N/m
Mass of the block, m = 0.2 kg
To find,
The velocity of the block when it first reaches a height of 0.1 m above the ground on the ramp.
Solution,
When the block is bounced back up the ramp, the total energy of the system remains conserved. Let v is the velocity of the block such that,
Initial energy = Final energy

Substituting all the values in above equation,

v = 1.28 m/s
Therefore the velocity of block when it first reaches a height of 0.1 m above the ground on the ramp is 1.28 m/s.
That will depend on which course you're talking about. It will be a minor role in, say, Maritime Law or Comparitive Religion, but a major one in, say, Particle Physics or Linear Algebra.
Answer:

Explanation:
It says “Momentum before the collision is equal to momentum after the collision.” Elastic Collision formula is applied to calculate the mass or velocity of the elastic bodies.












Answer:
Speed of the helium after collision = 246 m/s
Explanation:
Given that
Mass of helium ,m₁ = 4 u
u₁=598 m/s
Mass of oxygen ,m₂ = 32 u
u₂ = 401 m/s
v₂ =445 m/s
Given that initially both are moving in the same direction and lets take they are moving in the right direction.
Speed of the helium after collision = v₁
There is no any external force on the masses that is why the linear momentum will be conserve.
Initial linear momentum = Final linear momentum
P = m v
m₁u₁+m₂u₂ = m₁v₁+m₂v₂
598 x 4 + 32 x 401 = 4 x v₁+ 32 x 445
v₁ = 246 m/s
Speed of the helium after collision = 246 m/s
Answer:The change in pressure can affect the pressure on the fluid through the radius and diameter of the pipe.
r^² x Pressure (pa).
Therefore the narrower the other part of the pile, the greater the pressure on the fluid at such part, the wider in other part the lesser the pressure on the fluid at this part.
Explanation: