Answer:
F=G(m1m2)/Rsquare if radius is given
F=G(m1m2)/dsquare if distance is given
where,
f =gravitational force
G =gravitational constant
m1=mass of one object
m2=mass of another object
d=distance between two object from their center r=radius of earth/planet
Answer:
The magnitude of the force is 0.7255kN
Explanation:
The elevator floor acts on the person with a force that is due to the gravitational acceleration less the downward acceleration of the elevator:
(force of floor F) = (mass of person m) x [ (grav. acceleration g) - (elevator acceleration a) ]
in other words, considering the elevator floor as a reference frame in the Earth's gravitational field, the person's weight decreases due to the downward acceleration, as follows:

We are given the person's weight at rest, 0.9kN, from which the mass can be determined as:

So

Answer:
B: Energy that is transformed is neither created or destroyed
Explanation:
Answer:
A block of mass M = 5 kg is resting on a rough horizontal surface for which the coefficient of friction is 0.2. When a force F = 40N is applied, the acceleration of the block will be then (g=10ms
2 ).
Mass of the block=5kg
Coeffecient of friction=0.2
external applied force, F=40N
The angle at which the force is applied=30degree
So the horizontal component of force=Fcos30=40×
23 =20 3 N
While the uertical component of the force acting in upward direction=Fsin30=40× 21
=20N
The normal reaction from the surface (N)=mg−Fsin30=50−20=30N
So the ualue of limiting friction=μN=0.2×30=6N
Hence the net horizontal force on the block=Fcos30=μN=20
3
N−6N=28.64N
The horizontal acceleration of the block=
m
Fcos30−μN = 528.64
=5.73m/s 2