Answer:
d = 10.076 m
Explanation:
We need to obtain the velocity of the ball in the y direction
Vy = 24.5m/s * sin(35) = 14.053 m/s
To obtain the distance, we use the formula
vf^2 = v0^2 -2*g*d
but vf = 0
d = -vo^2/2g
d = (14.053)^2/2*(9.8) = 10.076 m
1). both
2). Venus
3). Venus catastrophically; Earth too but much less.
4). Earth
5). Earth
6). Venus (It would be pretty hard for US to mistake Earth for a star.)
Answer:

Explanation:
Where E is the magnitude of electric field...
k is called Columb's Constant. It has a value of 8.99 x 109 N m2/C2.
Qs is the magnitude of the source charge...
and r is the magnitude of distance between source and target...
(When electron comes to rest Δt the magnitude of Electric field E become zero momentarily but later achieves the maximum value...)
Answer:
The second ball lands 1.5 s after the first ball.
Explanation:
Given;
initial velocity of the ball, u = 12 m/s
height of fall, h = 35 m
initial velocity of the second, v = 12 m/s
Time taken for the first ball to land;

determine the maximum height reached by the second ball;
v² = u² -2gh
at maximum height, the final velocity, v = 0
0 = 12² - (2 x 9.8)h
19.6h = 144
h = 144 / 19.6
h = 7.35 m
time to reach this height;

Total height above the ground to be traveled by the second ball is given as;
= 7.35 m + 35m
= 42.35 m
Time taken for the second ball to fall from this height;

total time spent in air by the second ball;
T = t₁ + t₂
T = 1.23 s + 2.94 s
T = 4.17 s
Time taken for the second ball to land after the first ball is given by;
t = 4.17 s - 2.67 s
T = 1.5 s
Therefore, the second ball lands 1.5 s after the first ball.
The answer to your question is body weight,<span> </span>body heat and muscle mass<span>.
Hoped I Helped!</span>