Answer:
oxidation occurs at the cathode.
Explanation:
In a voltaic cell electrons move from anode to cathode. At the anode, species give up electrons. This is an oxidation reaction depicted by the oxidation half equation. At the cathode, species accept electrons and become reduced. This is depicted by the reduction half equation. In summary; in a Voltaic cell, oxidation occurs at the anode while reduction occurs at the cathode.
The answer that would best complete the given statement above would be option A. Both "Ode to the West wind" and "Ode for Melancholy" praise <span>something non-human. Hope this answers your question. Have a great day ahead!</span>
___
Regarding the bonds in FesO₄, Fe and S have an ionic bond, while S and O have covalent bonds.
Elements form bonds to increase their stability. The main types of bonds are:
- Metallic bonds: they are formed between metals and the electrons are in a delocalized cloud.
- Ionic bonds: they are formed between metals (lose electrons) and nonmetals (gain electrons)
- Covalent bonds: they are formed between nonmetals, which share electrons.
Regarding the bonds in FesO₄:
- Fe is a metal and S a nonmetal, thus they will form ionic bonds.
- S and O are both nonmetals, thus they will form covalent bonds.
Regarding the bonds in FesO₄, Fe and S have an ionic bond, while S and O have covalent bonds.
Learn more: brainly.com/question/23882847
Yes they can have origins in nature. A bunch of the elements on the periodic table are chemicals and this are basic substances and cannot be man made.
Thank you for posting your question here. Below is the solution:
HNO3 --> H+ + NO3-
<span>HNO3 = strong acid so 100% dissociation </span>
<span>** one doesn't need to find the molarity of water since it is the solvent </span>
<span>0M HNO3 </span>
<span>1x10^-6M H3O+ </span>
<span>1x10^-6M NO3- </span>
<span>1x10^-8M OH-.....the Kw = 1x10^-14 = [H+][OH-] </span>
<span>you have 1x10^-6M H+ so, 1x10^-14 / 1x10^-6 = 1x10^-8M OH- </span>
<span>1x10^-6 Ba(OH)2 = strong base, 100% dissociation </span>
<span>1x10^-6M Ba2+ </span>
<span>2x10^-6M OH- since there are 2 OH- / 1 Ba2+ </span>
<span>0M Ba(OH)2 </span>
<span>5x10^-9M H3O+</span>