Place it in the back of your phone where the old battery was
Answer:
0° C
Explanation:
Given that
Mass of ice, m = 50g
Mass of water, m(w) = 50g
Temperature of ice, T(i) = 0° C
Temperature of water, T(w) = 80° C
Also, it is known that
Specific heat of water, c = 1 cal/g/°C
Latent heat of ice, L(w) = 89 cal/g
Let us assume T to be the final temperature of mixture.
This makes the energy balance equation:
Heat gained by ice to change itself into water + heat gained by melted ice(water) to raise its temperature at T° C = heat lost by water to reach at T° C
m(i).L(i) + m(i).c(w)[T - 0] = m(w).c(w)[80 - T], on substituting, we have
50 * 80 + 50 * 1(T - 0) = 50 * 1(80 - T)
4000 + 50T = 4000 - 50T
0 = 100 T
T = 0° C
Thus, the final temperature is 0° C
Answer:
3.16X10∧-11 m
Explanation:
1/2 mv2 = qV (KE = Electric potential energy)
velocity = √2qV/m = √( 2X 1.6X10∧-19 X 1500/9.11X10∧-31)
2.3X10∧7m/s
now use De Broglie equation
λ = h/mv
= 6.62X10∧-34/( 9.11X10∧-31 X 2.3X10∧7)
3.16 X 10∧-11 m
or
use the above equations and substitute to get the final eqiation
λ = h/√(2mqV) = 3.16X 10∧-11 m
Answer:
Vi = 0.055 m³ = 55 L
Explanation:
From first Law of Thermodynamics, we know that:
ΔQ = ΔU + W
where,
ΔQ = Heat absorbed by the system = 52.5 J
ΔU = Change in Internal Energy = -102.5 J (negative sign shows decrease in internal energy of the system)
W = Work Done in Expansion by the system = ?
Therefore,
52.5 J = - 102.5 J + W
W = 52.5 J + 102.5 J
W = 155 J
Now, the work done in a constant pressure condition is given by:
W = PΔV
W = P(Vf - Vi)
where,
P = Constant Pressure = (0.5 atm)(101325 Pa/1 atm) = 50662.5 Pa
Vf = Final Volume of System = (58 L)(0.001 m³/1 L) = 0.058 m³
Vi = Initial Volume of System = ?
Therefore,
155 J = (50662.5 Pa)(0.058 m³ - Vi)
Vi = 0.058 m³ - 155 J/50662.5 Pa
Vi = 0.058 m³ - 0.003 m³
<u>Vi = 0.055 m³ = 55 L</u>
Answer:
- 9m/s²
Explanation:
Given parameters:
Initial velocity = 40m/s
Time taken = 3s
Final velocity = 13m/s
Unknown:
Acceleration of the car = ?
Solution:
Acceleration is the rate of change of velocity with time taken.
Acceleration =
Acceleration =
= - 9m/s²