Answer:
A) The speed of the water must be 8.30 m/s.
B) Total kinetic energy created by this maneuver is 70.12 Joules.
Explanation:
A) Mass of squid with water = 6.50 kg
Mass of water in squid cavuty = 1.55 kg
Mass of squid = 
Velocity achieved by squid = 
Momentum gained by squid = 
Mass of water = 
Velocity by which water was released by squid = 
Momentum gained by water but in opposite direction = 
P = P'


B) Kinetic energy does the squid create by this maneuver:
Kinetic energy of squid = K.E =
Kinetic energy of water = K.E' = 
Total kinetic energy created by this maneuver:


Answer:
Explanation:
Balance point will be achieved as soon as the weight of the baby elephant creates torque equal to torque created by weight of woman about the pivot. torque by weight of woman
weight x distance from pivot
= 500x 5
= 2500 Nm
torque by weight of baby woman , d be distance of baby elephant from pivot at the time of balance
= 2500x d
for equilibrium
2500 d = 2500
d = 1 m
So elephant will have to walk up to 1 m close to pivot or middle point.
A metallic bond would be formed
The specific heat of the unknown substance with a mass of 0.158kg is 0.5478 J/g°C
HOW TO CALCULATE SPECIFIC HEAT CAPACITY:
The specific heat capacity of a substance can be calculated using the following formula:
Q = m × c × ∆T
Where;
- Q = quantity of heat absorbed (J)
- c = specific heat capacity (4.18 J/g°C)
- m = mass of substance
- ∆T = change in temperature (°C)
According to this question, 2,510.0 J of heat is required to heat the 0.158kg substance from 32.0°C to 61.0°C. The specific heat capacity can be calculated:
2510 = 158 × c × (61°C - 32°C)
2510 = 4582c
c = 2510 ÷ 4582
c = 0.5478 J/g°C
Therefore, the specific heat capacity of the unknown substance that has a mass of 0.158 kg is 0.5478 J/g°C.
Learn more about specific heat capacity at: brainly.com/question/2530523