Answer:
Total momentum = 50kgm/s
Explanation:
<u>Given the following data;</u>
Mass, M1 = 5kg
Mass, M2 = 7kg
Velocity, V1 = 10m/s
Velocity, V2 = 0m/s (since it's at rest).
To find the total momentum;
Momentum can be defined as the multiplication (product) of the mass possessed by an object and its velocity. Momentum is considered to be a vector quantity because it has both magnitude and direction.
Mathematically, momentum is given by the formula;
The law of conservation of momentum states that the total linear momentum of any closed system would always remain constant with respect to time.
Total momentum = M1V1 + M2V2
Substituting into the equation, we have;
Total momentum = 5*10 + 7*0
Total momentum = 50 + 0
<em>Total momentum = 50 kgm/s</em>
<em>Therefore, the total momentum of the bowling ball and the putty after they collide is 50 kgm/s. </em>
Answer:
The law zero of thermodynamics.
Explanation:
The law zero of thermodynamics, which tells us that heat flows from a body at a higher temperature to another body with lower temperature, when the heat transfer is zero, it is said that the two bodies are in thermal equilibrium, their temperatures are equal
Find the electric flux and the disp at t=0.50ns
<span>Given: </span>
<span>Resistor R = 160 Ω </span>
<span>Voltage ε = 22.0 V </span>
<span>Capacitor C = 3.10 pF = 3.10 * 10^-12 F </span>
<span>time t = 0.5 ns = 0.5 * 10^-9 s </span>
<span>ε0 = 8.85 * 10^-12 </span>
<span>Solution: </span>
<span>ELECTRIC FLUX: </span>
<span>Φ = Q/ε0 </span>
<span>we have ε0, we need to find Q the charge </span>
<span>STEP 1: FIND Q </span>
<span>Q = C ε ( 1 - e^(-t/RC) ) </span>
<span>Q = { 3.10 * 10^-12 } { 22.0 } { 1 - e^(- 0.5 * 10^-9 / 160 *3.10 * 10^-12 ) } </span>
<span>Q = { 3.10 * 10^-12 } { 22.0 } { 1 - 0.365 } </span>
<span>Q = { 3.10 * 10^-12 } { 22.0 } { 0.635 } </span>
<span>Q = 43.31 * 10^-12 C </span>
<span>STEP 2: WE HAVE Q AND ε0 > >>> SOLVE FOR ELECTRIC FLUX >>> </span>
<span>Φ = Q/ε0 </span>
<span>Φ = { 43.31 * 10^-12 C } / { ε0 = 8.85 * 10^-12 } </span>
<span>Φ = 4.8937 = 4.9 V.m </span>
<span>DISPLACEMENT CURRENT </span>
<span>we use the following equation: </span>
<span>I = { ε / R } { e^(-t/RC) } </span>
<span>I = { 22 / 160 } { e^(- 0.5 * 10^-9 / 160 *3.10 * 10^-12 ) } </span>
<span>I = { 0.1375 } { 0.365 } </span>
<span>I = 0.0502 A = 0.05 A </span>
Answer:
A
Explanation:
I guess but not sure cause wind is soemthing you can get back electricity is soemthing you can't