Answer:
Explanation:
In the decibel scale , intensity of sound changes logarithmically as follows
Value in decibel scale , the value of I₀ = 10⁻¹² W /m².
Putting the values



W/m²
Similarly for 54 dB sound intensity can be given as follows
I = 10⁻¹² x 
W / m²
For intensity of sound the relation is as follows
I = 2π²υ²A²ρc where υ is frequency , A is amplitude , ρ is density of air and c is velocity of sound .
Putting the given values for 71 dB
= 2π² x 504²xA²x 1.21 x 346
A² = 60.03 x 10⁻¹⁶
A = 7.74 x 10⁻⁸ m
For 54 dB sound
= 2π² x 504²xA²x 1.21 x 346
A² = 1.1978 x 10⁻¹⁶
A = 1.1 x 10⁻⁸ m
I believe Action potential is the brief wave of positive charge that sweeps down the axon. Axon is part of the neuron that conducts impulses from the dendrites towards the cell body along the neuron. The action potential is brief since the sodium channels can only stay open for a very brief amount of time. As it travels along the neuron there is a change in polarity across the membrane of the axon .
5.7 kilometers is equal to 3.5418157957528034 miles
Option B The thickness of the central portion of a thin conveying lens can be determined very accurately by using a micrometer screw gauge.
<h3>What can be measured using a micrometer screw gauge?</h3>
One micrometer of thickness can be measured with a micron micrometre screw gauge. A Use of Micrometer Screw Gauge as like example Upon turning the screw of the micrometer screw gauge four times, a 2 mm space is covered.
<h3>What purposes does a micrometer serve?</h3>
A tool known as a micrometer is used to measure solid objects’ lengths, thicknesses, and other dimensions precisely and linearly.
<h3>What is the micrometer screw gauge’s SI unit?</h3>
The SI symbol m is also known as a micron, which is an SI-derived unit of length equaling 1106 meters, where 106 is the SI standard prefix for the prefix “micro-.” A micrometer is one-millionth of a meter.
To know more about screw gauges, visit:
brainly.com/question/4704005
#SPJ13
Answer: electric field
Explanation: when a charge is placed in space, it alters the space around it by creating an electric field.
This electric field has the ability to exert a force (f) on any test charge(q) placed within this vicinity.
This is the reason why a charge can either attract or repel another charge.