Answer:
1.Radio waves from using your TV.
2. microwaves you are in satellites.
3.UV light waves come from sunlight
4.x ray waves used at the doctors office
5. infrared waves are in remote controls when sending signals.
I don't know if I can think of another 5 right now. but I hope this helps.
Well, first of all, you really shouldn't use ' W ' for the unit when you
talk about resistors.
You may have seen the resistors written as 6ω, 12ω, and 2ω in your
book or on the homework sheet. But that little symbol ' ω ' is not a ' w '.
It's the small Greek letter 'omega'. The CAPITAL omega is ' Ω '. It's used
to label resistors because it's short for "ohms". So the resistors in this
problem have resistances of 6Ω, 12Ω, and 2Ω, and we have to do some
manipulating of the individual resistors to find out what resistance the
battery actually sees.
The parallel combination of the first two resistors looks like a single
resistor, whose value is
1 / (1/6 + 1/12)
= 1 / (2/12 + 1/12)
= 1 / (3/12)
= 12/3 = 4Ω .
Now, that parallel combination is connected in series with 2Ω .
All three resistors together look like a single resistor of
4Ω + 2Ω = 6Ω .
So the battery thinks there's a single resistor connected to it,
with 6Ω of resistance. The current out of the battery is
I = V / R = (24v) / (6Ω) = 4 Amperes.
That 4 Amperes of current will split between the parallel resistors,
but it will ALL flow through the series 2Ω resistor because there's
no other path through that part of the circuit.
So the current through the 2Ω resistor is 4 Amperes. (B).
Note:
The POWER dissipated by the 2Ω resistor is
P = I² R = (4A)² · (2Ω) = 32 watts .
This is a fair amount of heat, so you'll need to provide some way
to remove the heat from the resistor, otherwise it'll burn or crack.
Answer:
Explanation:
Given that,
The mutual inductance of the two coils is
M = 300mH = 300 × 10^-3 H
M = 0.3 H
Current increase in the coil from 2.8A to 10A
∆I = I_2 - I_1 = 10 - 2.8
∆I = 7.2 A
Within the time 300ms
t = 300ms = 300 × 10^-3
t = 0.3s
Second Coil resistance
R_2 = 0.4 ohms
We want to find the current in the second coil,
The same induced EMF is in both coils, so let find the EMF,
From faradays law
ε = Mdi/dt
ε = M•∆I / ∆t
ε = 0.3 × 7.2 / 0.3
ε = 7.2 Volts
Now, this is the voltage across both coils,
Applying ohms law to the second coil, V=IR
ε = I_2•R_2
0.72 = I_2 • 0.4
I_2 = 0.72 / 0.4
I_2 = 1.8 Amps
The current in the second coil is 1.8A
Answer:
a. much stronger than that of Earth and greatly extended.
Explanation:
Jupiter is a gas giant. It mainly consists of hydrogen and helium and also may have rocky core. Jupiter has the fastest rotational period among the planets of the solar system. One day on Jupiter lasts for 11 hours. This rotation causes the hydrogen in the atmosphere to rotate at great speed.
The rotation of the hydrogen generates the magnetic field of Jupiter. It is almost 14 times greater than the Earth's magnetic field in terms of strength and the second largest in terms of distance after the sun.