Answer:
weathering breaks down the rocks while erosion moves them away from its original growth
Answer:
Explanation:
Given
mass of boy=36 kg
length of swing=3.5 m
Let T be the tension in the swing
At top point 
where v=velocity needed to complete circular path
Th-resold velocity is given by 

So apparent weight of boy will be zero at top when it travels with a velocity of 
To get the velocity at bottom conserve energy at Top and bottom
At top 
Energy at Bottom 
Comparing two as energy is conserved



Apparent weight at bottom is given by

Answer:
6.67 ohm
Explanation:
From the question given above, the following data were obtained:
Resistor 1 (R₁) =20 ohm
Resistor 2 (R₂) = 20 ohm
Resistor 3 (R₃) = 20 ohm
Equivalent Resistance (R) =?
Since the resistors are arranged in parallel connection, the equivalent resistance can be obtained as follow:
1/R = 1/R₁ + 1/R₂ + 1/R₃
1/R = 1/20 + 1/20 + 1/20
1/R = (1 + 1 + 1) / 20
1/R = 3/20
Invert
R = 20/3
R = 6.67 ohm
Therefore, the equivalent resistance is 6.67 ohm.
200 joules of work energy are involved. That's all we need to know to answer the question. Once we know that 200 joules of work energy are involved, we don't care what was lifted, or how far, or how long it took, or how many people worked on it, or how much they were paid, or what was the distribution of their gender identities, or the ethnic diversity among the team. or what day each of them celebrates as their sabbath. Any other information besides the 200 joules is only there to distract us, and see whether we're paying attention.
Power = (work or energy) / (time to do the work or move the energy)
Power = (200 joules) / (5 seconds)
<em>Power = 40 watts</em>
Answer:
Explanation:
Let electric potential at A ,B and C be Va , Vb and Vc respectively.
Work done = charge x potential difference
Wab = q ( Va - Vb )
Wac = q ( Va - Vc )
Given
Wac = - Wab / 3
3Wac = - Wab
Now
Wbc = q ( Vb - Vc )
= q [ ( Va-Vc ) - ( Va - Vb )]
= Wac - Wab
= Wac + 3Wac
= 4Wac