<span>To relate or measure the by the quantity of something, not against the quantity</span>
32? I could be wrong but I’m going with that answer choice
Answer:
<u>We are given:</u>
displacement (s) = 130 m
acceleration (a) = -5 m/s²
final velocity (v) = 0 m/s [the cars 'stops' in 130 m]
initial velocity (u) = u m/s
<u>Solving for initial velocity:</u>
From the third equation of motion:
v² - u² = 2as
replacing the variables
(0)² - (u)² = 2(-5)(130)
-u² = -1300
u² = 1300
u = √1300
u = 36 m/s
Complete Question
Due to blurring caused by atmospheric distortion, the best resolution that can be obtained by a normal, earth-based, visible-light telescope is about 0.3 arcsecond (there are 60 arcminutes in a degree and 60 arcseconds in an arcminute).Using Rayleigh's criterion, calculate the diameter of an earth-based telescope that gives this resolution with 700 nm light
Answer:
The diameter is
Explanation:
From the question we are told that
The best resolution is 
The wavelength is 
Generally the
1 arcminute = > 60 arcseconds
=> x arcminute => 0.3 arcsecond
So

=> 
Now
60 arcminutes => 1 degree
0.005 arcminutes = > z degrees
=> 
=> 
Converting to radian

Generally the resolution is mathematically represented as

=> 
=>
=>
G is the gravitational constant, which is approximately 6.6x10^-11 Nm/s^2. It has the same value regardless of the masses of both objects or the distance between them.