Answer:
7200 kg.m/s
Explanation:
According the law of conservation of linear momentum, the sum of momentum before and after collision are equal.
Using this principle, the sum of initial momentum will be given as p=mv where p is momentum, m is mass and v is velocity
Initial momentum
Mass of whale*initial velocity of whale + mass of seal*initial seal velocity
Since the seal is initially stationary, its velocity is zero. By substitution and taking right direction as positive
Initial momentum will be
1200*6+(280*0)=7200 kg.m/s
Since both initial and final momentum should be equal, hence the final momentum will also be 7200 kg.m/s
Deposition:
- when a gas changes directly to a solid
- latent heat is released
- physical change, NOT a chemical change
In order to calculate the thermal energy, first let's calculate the power, using the formula:

For a voltage V = 9 Volts and a resistance R = 50 ohms, we have:

Now, multiplying the power by the time (in seconds), we can find the energy:

In scientific notation, we have an energy of 7.3 * 10^2 J, therefore the correct option is the fourth one.
The frequency of a simple harmonic oscillator such as a spring-mass system is given by

where
k is the spring constant
m is the mass attached to the spring.
Re-arranging the formula, we get:

and since we know the constant of the spring:

and the frequency of oscillation:
f=1.00 Hz
we can find the value of the mass attached to it: