The car undergoes an acceleration <em>a</em> such that
(45.0 km/h)² - 0² = 2 <em>a</em> (90 m)
90 m = 0.09 km, so
(45.0 km/h)² - 0² = 2 <em>a</em> (0.09 km)
Solve for <em>a</em> :
<em>a</em> = (45.0 km/h)² / (2 (0.09 km)) = 11,250 km/h²
Ignoring friction, the net force acting on the car points in the direction of its movement (it's also pulled down by gravity, but the ground pushes back up). Newton's second law then says that the net force <em>F</em> is equal to the mass <em>m</em> times the acceleration <em>a</em>, so that
<em>F</em> = (4500 kg) (11,250 km/h²)
Recall that Newtons (N) are measured as
1 N = 1 kg • m/s²
so we should convert everything accordingly:
11,250 km/h² = (11,250 km/h²) (1000 m/km) (1/3600 h/s)² ≈ 0.868 m/s²
Then the force is
<em>F</em> = (4500 kg) (0.868 m/s²) = 3906.25 N ≈ 3900 N
Answer:
B. They each contain the same amount of matter.
Explanation:
Scientifically, mass is the amount of matter in an object.
A. Whether an object is big or small does not mean that it will be a certain mass. If you have two objects that are the same size, the denser object will have more mass, and the less dense object will have less mass.
C. The amount of space an object takes up is called the volume.
D. Different combinations and amounts of elements can give you the same mass. Rocks, books and cans of soda are made of different things.
Answer:
The current in second wire is 5.0 A.
(B) is correct option.
Explanation:
Given that,
Current in first wire = 3.7 A
Distance = 8.0 cm
We need to calculate the magnetic field due to the current carrying wire
Using formula of magnetic field

Where, I = current
r = distance
Put the value into the formula
For first wire
...(I)
For second wire,
The distance is 8-3.7 = 4.3 cm
...(II)
The magnetic field in both the wires,
From equation (I) and (II)



Hence, The current in second wire is 5.0 A.
Examples of non ohmic materials are tungsten filament (bulb), diode,thermistors, crystal rectifiers and vacuum tube.