Answer:
well, as u can tell the top layer will always be the youngest layer aka the newest layer. The farther u go down the older the layers get. So the deeper u dig the farther back in time we see.
Explanation:
<span>The force acting on the ball is the same than the ball acts on the floor at the moment of hitting but in the reverse direction. So the ball produces a force downwards and the floor makes the same force in value but upwards.
Then the value of the force that impulses the ball upward is: F = m * a
where F is force or impulse, m is mass of the ball and a is acceleration (9.8 m/s2)
F = 1.2 kg * 9.8 m/s2 = 11.76 kg*m/s2 = 11.76 Newtons (upwards)</span>
Terabytes. 1 terabyte is equal to 1,000 gigabytes
Answer:
Explanation:
a net force of F causes a cart with a mass of M to accelerate at 48 cm/s/s.
F = M x 48
Mass M = F / 48
a )
When force = 2F and mass = M
Acceleration = force / mass
= 2F /F/48
= 48 X 2 = 96 cm/s²
b )
When force = F and mass = 2M
Acceleration = force / mass
= F /2F/48
= 24 cm/s²
c )
When force = 2F and mass = 2M
Acceleration = force / mass
= 2F /2F/48
= 48 cm/s
d )
When force = 2F and mass = 4M
Acceleration = force / mass
= 2F /4F/48
= 24 cm/s
e)
When force = 4F and mass = 2M
Acceleration = force / mass
= 4F / 2M
= 4F / 2 F/48
= 48 x 2
Acceleration = 96 cm/s²
Impulse = mass * change in velocity (change in momentum) = Force * change in time
So, F=(m*change in v)/(change in t)
F=(60*20)/0.5=2400N
Therefore the magnitude of the average force exerted on the cyclist by the haystack is 2.4*10^3N