To solve this problem we will use the concepts related to gravitational acceleration and centripetal acceleration. The equality between these two forces that maintains the balance will allow to determine how the rigid body is consistent with a spherically symmetric mass distribution of constant density. Let's start with the gravitational acceleration of the Star, which is

Here



Mass inside the orbit in terms of Volume and Density is

Where,
V = Volume
Density
Now considering the volume of the star as a Sphere we have

Replacing at the previous equation we have,

Now replacing the mass at the gravitational acceleration formula we have that


For a rotating star, the centripetal acceleration is caused by this gravitational acceleration. So centripetal acceleration of the star is

At the same time the general expression for the centripetal acceleration is

Where
is the orbital velocity
Using this expression in the left hand side of the equation we have that



Considering the constant values we have that


As the orbital velocity is proportional to the orbital radius, it shows the rigid body rotation of stars near the galactic center.
So the rigid-body rotation near the galactic center is consistent with a spherically symmetric mass distribution of constant density
Answer:
b. craters, river valleys feeding into surface lakes of very cold liquids
Explanation:
- Jovian moons are the four largest satellites like the moon of the Jupiter ie the Lo, Europa, Ganymede, Callisto and were first seen by the galileo. They are amiugly the largest moons with radii larger than the dwarf planet.
- Lo has more than 400 active volcanoes and dotted more than 100 mountains and has an extremely thin atmosphere made up of sulfur dioxide. The Europa has deep oceans of liquid water, and the layer of ice, and are characteristic of the tidal heating.
- <u>While the surface of Callisto is heavily cratered and has salty liquid water.</u>
Answer:
Lamentablemente el problema está incompleto, pues no sabemos la dirección en la que se aplican las fuerzas. Por ello, voy a resolver el problema asumiendo dos casos. (abajo se puede ver una imagen donde se describe cada caso)
1) Todas las fuerzas están en la misma dirección.
Entonces la fuerza neta será la suma de las 3 fuerzas, entonces:
F = 48N + 60N + 30N = 138N
Y por la segunda ley de Newton sabemos que:
F = m*a
fuerza igual a masa por aceleración.
Entonces la aceleración está dada por:
a = F/m = 138N/12kg = 11.5 m/s^2
2) Segundo caso, suponemos que F1 es opuesta a F2 y F3
En este caso, la fuerza neta será:
F = F2 + F3 - F1 = 60N + 30N - 48N = 42N
En este caso, la aceleración será:
a = 42N/12kg = 3.5 m/s^2
KE = 1/ 2 * 1252 * 144
as KE = 1/2 * m * v ^2
= 90144 J