1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mumz [18]
3 years ago
8

Two men pushing a stalled car generate a net force of +690Nfor

Physics
1 answer:
Karolina [17]3 years ago
7 0

Answer:

The final momentum of the car is 4554 kg m/s.

Explanation:

Given that,

F = 690 N

Time = 6.6 sec

Momentum :

The momentum is the product of the force and change of time.

We need to calculate the final momentum

Using formula of momentum

\Delta p=F\times \Delta t

Where, F = force

t = time

Put the value into the formula

\Delta p=690\times6.6

\Delta p=4554\ kg-m/s

Hence, The final momentum of the car is 4554 kg m/s.

You might be interested in
2. is a variable that gives location relative to an origi
xeze [42]
Where is the rest of the sentence?
4 0
3 years ago
An air mass is a large pocket of air with _____.
maw [93]
An air mass is a large pocket of air with a uniform temperature and humidity
5 0
3 years ago
A 40kg rock falls off a cliff that is 50 meters high. How fast is the speed of the rock when it hits the ground
Oksi-84 [34.3K]

31.3m/s

Explanation:

Given parameters:

Mass of rock = 40kg

Height of cliff = 50m

Unknown:

Speed of rock when it hits ground = ?

Solution:

We are going to use the appropriate motion equation to solve this problem

The rock is falling with the aid of gravitational force. The force is causing it to accelerate with an amount of velocity.

  Using;

                      V²  = U² + 2gH

V = unknown velocity

U = initial velocity = O

g = acceleration due to gravity = 9.8m/s²

H = height of fall

since the initial velocity of the bodyg is 0

     V²  = 2gH

    V= √2gH = √2 x 9.8 x 50 = 31.3m/s

learn more:

Velocity brainly.com/question/4460262

#learnwithBrainly

7 0
3 years ago
Calculate the equivalent of 20 degrees Celsius in degrees Fahrenheit and Kelvin.
alekssr [168]

Answer:

68 °F, 293.15 K

Explanation:

Fahrenheit, Kelvin and Celsius are the different scales of temperature in which temperature is measured.

Given : T = 20°C

The conversion of T( °C) to T(K) is shown below:

T(K) = T( °C) + 273.15  

So,  

<u>T = (20 + 273.15) K = 293.15 K </u>

The conversion of T( °C) to T(F) is shown below:

T (°F) = (T (°C) × 9/5) + 32

So,

<u>T (°F) = (20 × 9/5) + 32 = 68 °F</u>

3 0
3 years ago
Two cylinders each contain 0.30 mol of a diatomic gas at 320 K and a pressure of 3.0 atm. Cylinder A expands isothermally and cy
Svetllana [295]

Answer :

(a). The final temperature of the gas in the cylinder A is 320 K.

(b). The final temperature of the gas in the cylinder B is 233.7 K.

(c). The final volume of the gas in the cylinder A is 7.86\times10^{-3}\ m^3

(d). The final volume of the gas in the cylinder B is 5.7\times10^{-3}\ m^3

Explanation :

Given that,

Number of mole n = 0.30 mol

Initial temperature = 320 K

Pressure = 3.0 atm

Final pressure = 1.0 atm

We need to calculate the initial volume

Using formula of ideal gas

P_{1}V_{1}=nRT

V_{1}=\dfrac{nRT}{P_{1}}

Put the value into the formula

V_{1}=\dfrac{0.30\times8.314\times320}{3.039\times10^{5}}

V_{1}=2.62\times10^{-3}\ m^3

(a). We need to calculate the final temperature of the gas in the cylinder A

Using formula of ideal gas

In isothermally, the temperature is not change.

So, the final temperature of the gas in the cylinder A is 320 K.

(b). We need to calculate the final temperature of the gas in the cylinder B

Using formula of ideal gas

T_{2}=T_{1}\times(\dfrac{P_{1}}{P_{2}})^{\frac{1}{\gamma}-1}

Put the value into the formula

T_{2}=320\times(\dfrac{3}{1})^{\frac{1}{1.4}-1}

T_{2}=233.7\ K

(c). We need to calculate the final volume of the gas in the cylinder A

Using formula of volume of the gas

P_{1}V_{1}=P_{2}V_{2}

V_{2}=\dfrac{P_{1}V_{1}}{P_{2}}

Put the value into the formula

V_{2}=\dfrac{3\times2.62\times10^{-3}}{1}

V_{2}=0.00786\ m^3

V_{2}=7.86\times10^{-3}\ m^3

(d). We need to calculate the final volume of the gas in the cylinder B

Using formula of volume of the gas

V_{2}=V_{1}(\dfrac{P_{1}}{P_{2}})^{\frac{1}{\gamma}}

V_{2}=2.62\times10^{-3}\times(\dfrac{3}{1})^{\frac{1}{1.4}}

V_{2}=0.0057\ m^3

V_{2}=5.7\times10^{-3}\ m^3

Hence, (a). The final temperature of the gas in the cylinder A is 320 K.

(b). The final temperature of the gas in the cylinder B is 233.7 K.

(c). The final volume of the gas in the cylinder A is 7.86\times10^{-3}\ m^3

(d). The final volume of the gas in the cylinder B is 5.7\times10^{-3}\ m^3

6 0
3 years ago
Other questions:
  • How does conduction occur?
    9·1 answer
  • Suppose you have a piston in a cylinder where the gas temperature is 26.0° C and has a volume of 1.75 L. What is the volume of t
    10·2 answers
  • What is the average velocity of atoms in 1.00 mol of neon (a monatomic gas) at 288k?
    10·1 answer
  • Atomic number equals the number of _______ or the number of ______. * giving brainly*
    9·2 answers
  • 14. How are position and speed useful for describing the motion of an object?
    14·1 answer
  • The speed of sound in air is around 345 m/s. A tuning fork vibrates at 610 Hz above the open end of the sound resonance tube. Wh
    6·1 answer
  • A crate which has a mass of m1 = 125kg is sitting on an icy surface. A rope is attached to the crate and held at angle theta 28.
    14·1 answer
  • A gymnast jumps straight up, with her center of mass moving at 4.73 m/s as she leaves the ground. How high above this point is h
    5·1 answer
  • A motorcycle has a velocity of 24 m/s, due south as it passes a car with a velocity of 15 m/s, due north. What is the magnitude
    13·1 answer
  • A 10kg crate sits at rest on a rough flat surface. Astudent decides to pull the crate by attaching a rope at a 37 degree angle.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!