Answer:
Intensity, 
Explanation:
Power of the light bulb, P = 40 W
Distance from screen, r = 1.7 m
Let I is the intensity of light incident on the screen. The power acting per unit area is called the intensity of the light. Its formula is given by :




So, the intensity of light is
.
Answer:
the answer is a. a ball is moving towards the camera faster then slower
Answer:
Explanation:
Given that
Mass of bowling ball M1=7.2kg
The radius of bowling ball r1=0.11m
Mass of billiard ball M2=0.38kg
The radius of the Billiard ball r2=0.028m
Gravitational constant
G=6.67×10^-11Nm²/kg²
The magnitude of their distance apart is given as
r=r1+r2
r=0.028+0.11
r=0.138m
Then, gravitational force is given as
F=GM1M2/r²
F=6.67×10^-11×7.2×0.38/0.138²
F=9.58×10^-9N
The force of attraction between the two balls is
F=9.58×10^-9N
Answer:
A
Explanation:
hydrostatic pressure, P=hρg,
where 'h' is the ht of the liq column and ρ is the density of the liquid and 'g' is the effective acceleration, but as far as hydroSTATICS is concerned, g stands for the acceleration due to gravity
Answer:
x = 0.9 m
Explanation:
For this exercise we must use the rotational equilibrium relation, we will assume that the counterclockwise rotations are positive
∑ τ = 0
60 1.5 - 78 1.5 + 30 x = 0
where x is measured from the left side of the fulcrum
90 - 117 + 30 x = 0
x = 27/30
x = 0.9 m
In summary the center of mass is on the side of the lightest weight x = 0.9 m