The variable is qualitative,
the quantitative variables are those that can be specified by a numeric value.
Answer:
9.43 m/s
Explanation:
First of all, we calculate the final kinetic energy of the car.
According to the work-energy theorem, the work done on the car is equal to its change in kinetic energy:

where
W = -36.733 J is the work done on the car (negative because the car is slowing down, so the work is done in the direction opposite to the motion of the car)
is the final kinetic energy
is the initial kinetic energy
Solving,

Now we can find the final speed of the car by using the formula for kinetic energy

where
m = 661 kg is the mass of the car
v is its final speed
Solving for v, we find

Answer:
<h3>The answer is 300 N</h3>
Explanation:
The force acting on an object given the mass and acceleration we use the formula
<h3>force = mass × acceleration</h3>
We have
force = 15 × 20
We have the final answer as
<h3>300 N</h3>
Hope this helps you
Time taken to reach water :

Now, initial vertical speed , u = 0 m/s.
By equation of motion :

Here, a = g = acceleration due to gravity = 9.8 m/s².
So,

Therefore, the height of the bridge is 3.46 m.
Hence, this is the required solution.
Answer:
b. amplitude
Explanation:
An electromagnetic waveconsists of electrical oscillations and magnetic fields. The frequency of the wave is directly proportional to its energy and its speed and inversely proportional to its wavelength. Therefore, with the only magnitude with which it has no relation is with its amplitude.