Answer:
41.8m/s^2
Explanation:
Since the dragster starts from rest, initial velocity (u) = 0m/s, final velocity (v) = 25.9m/s, time (t) = 0.62s
From the equations of motion, v = u + at
a = (v - u)/t = (25.9 - 0)/0.62 = 25.9/0.62 = 41.8m/s^2
So momentum is just velocity times mass, this means Momentum = Velocity x Mass.
We can rearrange this to be Velocity = Momentum/Mass.
Since we know momentum and mass we can now solve.
Velocity = 264/(45+2.5)
= 5.56 m/s
Answer:
you can use math as a banker, a doctor, a scientist, the president probably uses math, you use math to see how much less juice you gave your sibling, and you can use math to help in collage! (sorry if its wrong tell me if it is)
<span>By algebra, d = [(v_f^2) - (v_i^2)]/2a.
Thus, d = [(0^2)-(15^2)]/(2*-7)
d = [0-(225)]/(-14)
d = 225/14
d = 16.0714 m
With 2 significant figures in the problem, the car travels 16 meters during deceleration.</span>
The gravitational force would get stronger because the farther the two masses are separated the more gravitational force will be used to pull them together the closer they are the less gravitational pull is used to pull them together