Answer:
4.0 m/s
Explanation:
In the first part of the run, the athlete runs a distance of

at a speed of

So, the time he/she takes is

In the second part of the run, the athlete covers an additional distance of

with a speed

So, the time taken in this second part is

So, the total distance covered is
d = 300 m + 300 m = 600 m
And the total time taken
t = 100 s + 50 s = 150 s
Therefore, the average speed for the entire trip is

Answer:
30.22 hours
Explanation:
Given data:
A= l² = (2 x
)² = 4 x
m²
Length 'L' = 5m
current '
' = 2 A
density of free electrons 'n'= 8.5 x
/m³
Current Density 'J' =
/ A
J= 2/4 x
J= 5 x
A/m²
We can determine the time required for an electron to travel the length of the wire by
T= L/ Vd
Where,
L is length and Vd is drift velocity.
Vd can be defined by J/ n|q|
where,
n is the charge-carrier number density
|q| is is the charge carried by each charge carrier
=>1.6 x
C
T= L/ Vd
Therefore,
T= L . n|q| / J
T= (4 x 8.5 x
x |1.6 x
|)/5 x
T= 108800 seconds =>1813.33 minutes
Converting minute into hours:
T= 30.22 hours
Thus, time that is required for an electron to travel the length of the wire is 30.22 hours
#A
Mass=4.4kg
acceleration=-1.74m/s^2
Use newtons second law



#B
initial velocity=u
Final velocity=v=0
Acceleration=a=-1.74m/s^2
Time=t=1.27s





Answer:
Answer: 18.3 km/s
Explanation:
If a satellite in Molniya orbit has an apogee at 48.000 km as measured from the center of Earth, and a velocity of 3.7 km/s. Its velocity in at perigee would be 18.3 km/s.