Answer:
-8.56V
Explanation:
Our values are given by,
e = 6.04 V
Φ = 30.3
VC = 5.32
We can calculate the voltage across the circuit with the emf formula, that is,




Now, Using Kirchoff Voltage Law,


Finally we have the potential difference across the inductor.

<span>When two waves of same frequency travel in a medium simultaneously in the same direction then, due to their superposition, the resultant intensity at any point of the medium is different from the sum of intensities of the two waves. At certain points the intensity of the resultant wave has a large value while at some points it has a very small or zero. This is called wave interference.</span>
C. Increasing the time of the force
This is because
Impulse = FΔt