A)Ep'=mgh=mgl(1-cosa).At the bottom of the swing Ep=0(reference level),so the potential energy as the child is just released is bigger than the potential energy at the bottom of the swing.;B)The speed of the child at the bottom of the swing-->v=√(2gh)=√[2gl(1-cosa)];C)I don't think that the tension does any work.
Answer:
1.67 A
Explanation:
Given that,
→ Power (P) = 400 W
→ Potential difference (V) = 240 V
→ Current (I) = ?
The amount of current drawn will be,
→ P = V × I
→ I = P/V
→ I = 400/240
→ I = 1.66666666667
→ [ I = 1.67 A ]
Hence, the current drawn 1.67 A.
That would be only rotational motion
The tree might get swept away by the current and it will disappear when it catches on something