We can use the kinematic equation

where Vf is what we are looking for
Vi is 0 since we start from rest
a is acceleration
and d is the distance
we get
(Vf)^2 = (0)^2 + 2*(2)*(500)
(Vf)^2 = 2000
Vf = about 44.721
or 44.7 m/s [if you are rounding this by significant figures]
Answer:
6.1 × 10^9 Nm-1
Explanation:
The electric field is given by
E= Kq/d^2
Where;
K= Coulombs constant = 9.0 × 10^9 C
q = magnitude of charge = 1.62×10−6 C
d = distance of separation = 1.53 mm = 1.55 × 10^-3 m
E= 9.0 × 10^9 × 1.62×10−6/(1.55 × 10^-3 )^2
E= 14.58 × 10^3/2.4 × 10^-6
E= 6.1 × 10^9 Nm-1
Gravitational force is stronger