Answer:
Carbonated Water
Explanation:
Carbonated water is a mixture of carbon dioxide gas and water.
Answer:
a) C6H5COOH + H2O ↔ H3O+ + C6H5COO-
b) [ H3O+ ] = 2.517 E-3 M
c) pH = 2.599
Explanation:
a) balanced equation:
C6H5COOH + H2O ↔ H3O+ + C6H5COO-
⇒ Ka = ( [ H3O+ ] * [ C6H5COO- ] ) / [ C6H5COOH ] = 6.5 E-5
mass balance:
0.10 m = [ C6H5COO- ] + [ C6H5COOH ].....(1)
charge balance:
[ H3O+ ] = [ C6H5COO- ] + [ OH- ] .......[ OH- ] : comes from water, it's not significant
⇒ [ H3O+ ] = [ C6H5COO- ] .........(2)
b) (2) in (1):
⇒ 0.10 M = [ H3O+ ] + [ C6H5COOH ]
⇒ [ C6H5COOH ] = 0.10 - [ H3O+ ]
⇒ Ka = [ H3O+ ]² / ( 0.1 - [ H3O+ ] ) = 6.5 E-5
⇒ [ H3O+ ]² + 6.5 E-5 [ H3O+ ] - 6.5 E-6 = 0
⇒ [ H3O+ ] = 2.517 E-3 M
c) pH = - log [ H3O+ ]
⇒ pH = - Log ( 2.517 E-3 )
⇒ pH = 2.599
Answer:
b. mercury
Explanation:
Fishes and some other sea foods are are known to concentrate mercury in their bodies. Consumption of these products gradually accumulate mercury in the body over time.
More specifically, fishes like swordfish, king mackerel and shark are known to concentrate higher amount of mercury than other species of fishes. Hence, limiting their consumption will protect humans from mercury poisoning.
The correct option is b.
The given question is incomplete. The image present in the question for Reaction A is attached below along with the answer.
Explanation:
Pyruvate molecule reacts with Coenzyme A in the presence of oxygen and it results in the formation of acetyl Coenzyme A and carbon dioxide.
The enzyme pyruvae dehydrogenase helps in catalyzing this reaction. As in this biochemical reaction
gets converted into NADH.
This reaction is shown in the image attached below.
<span>acceleration I think.</span>