Answer:
8.6 mol
Explanation:
number of moles = molar concentration x volume in litre
number of moles = 2.33 M x 3.70 L = 8.6 mol
Answer:
The ability of the molecule to pack more tightly increases the melting point.
Explanation:
In hydrocarbons of same molecular formula, melting point is determined by:
- weak intermolecular forces
- Molecular symmetry
Higher the intermolecular forces and molecular symmetry, higher will be the melting point.
Intermolecular forces in hydrocarbons decreases with branching. Moreover, branching interfere the tight packing of the molecule in the crystal. Therefore, branched hydrocarbons tend to have lower melting point.
However, in highly branched hydrocarbons molecular symmetry increases which results in tight packing of the molecule in the crystal.
So, highly tight packed molecules tend to have high melting point.
As (CH3)2CHC(CH3)3 is highly branched and has high molecular symmetry, therefore, its melting point is highest among given.
So, among the given, option c is correct.
Answer:
Distance from the earth
Explanation: Trust me we just did this and I got 100 percent on all of it.