There are now six major branches of engineering: Mechanical, Chemical, Civil, Electrical, Management, and Geotechnical, and literally hundreds of different subcategories of engineering under each branch.
Answer:
The answer is below
Explanation:
Let A represent the first switch, B represent the second switch and C represent the bulb. Also, let 0 mean turned off and 1 mean turned on. Since when both switches are in the same position, the light is off. This can be represented by the following truth table:
A B C (output)
0 0 0
0 1 1
1 0 1
1 1 0
The logic circuit can be represented by:
C = A'B + AB'
The output (bulb) is on if the switches are at different positions; if the switches are at the same position, the output (bulb) is off. This is an XOR gate. The gate is represented in the diagram attached below.
Answer:
birds-eye view perspective
Explanation:
If someone asked me to design an office building, I would draw it from a birds-eye view perspective. I would draw it this way so I could map out where everything in the office would go and make sure I have enough space for everything. I would also draw it this way in order to clearly see where everything would go in the office. For instance, cubicles/desks could go in the bottom left corner, while the boss's office could go in the top right. It would be easier to organize and it would be easier for me to look back on when I need to actually design the office later.
(i'm not sure if this is what your question is asking for so i just made my best guess)
The absolute zero in temperature refers to the minimal possible temperature. It is the temperature at which the molecules of a system stop moving, so it is a really useful reference point.
<h3>Why absolute zero can't be reached?</h3>
It would mean that we need to remove all the energy from a system, but to do this we need to interact with the system in some way, and by interacting with it we give it "some" energy.
Actually, from a quantum mechanical point of view, the absolute zero has a residual energy (so it is not actually zero) and it is called the "zero point". This happens because it must meet <u>Heisenberg's uncertainty principle</u>.
So yes, the absolute zero can't be reached, but there are really good approximations (At the moment there is a difference of about 150 nanokelvins between the absolute zero and the smallest temperature reached). Also, there are a lot of investigations near the absolute zero, like people that try to reach it or people that just need to work with really low temperatures, like in type I superconductors.
So, concluding, why does the concept exist?
- Because it is a reference point.
- It is the theoretical temperature at which the molecules stop moving, defining this as the <u>minimum possible temperature.</u>
If you want to learn more about the absolute zero, you can read:
brainly.com/question/3795971
Answer:
%Program prompts user to input vector
v = input('Enter the input vector: ');
%Program shows the value that user entered
fprintf('The input vector:\n ')
disp(v)
%Loop for checking all array elements
for i = 1 : length(v)
%check if the element is a positive number
if v(i) > 0
%double the element
v(i) = v(i) * 2;
%else the element is negative number.
else
%triple the element
v(i) = v(i) * 3;
end
end
%display the modified vector
fprintf('The modified vector:\n ')
disp(v)