Because of the skin depth effect, the current at high frequency tends to flow at very low depth from radius. Then at high frequency the effective cross section of the wire is narrower than at DC.
Fro example skin depth at 100 kHz is 0.206 mm (0.008”), a wire more thicker than AWG26 could be a waste of copper, better use a bunch of thin wire (Litz wire) to rise the Q factor.
Question:
The question is not complete. See the complete question and the answer below.
A well that pumps at a constant rate of 0.5m3/s fully penetrates a confined aquifer of 34 m thickness. After a long period of pumping, near steady state conditions, the measured drawdowns at two observation wells 50m and 100m from the pumping well are 0.9 and 0.4 m respectively. (a) Calculate the hydraulic conductivity and transmissivity of the aquifer (b) estimate the radius of influence of the pumping well, and (c) calculate the expected drawdown in the pumping well if the radius of the well is 0.4m.
Answer:
T = 0.11029m²/sec
Radius of influence = 93.304m
expected drawdown = 3.9336m
Explanation:
See the attached file for the explanation.
Answer:
What do you need help with?
Explanation:
Answer:
The Young's Modulus of a material is a fundamental property of every material that cannot be changed. It is dependent upon temperature and pressure however. The Young's Modulus (or Elastic Modulus) is in essence the stiffness of a material. In other words, it is how easily it is bended or stretched.
Explanation:
Have a great day