Explanation:
- Newton's first law of motion:
"An object at rest (or in uniform motion) remains at rest (or in uniform motion) unless acted upon an unbalanced force
In this situation, we can apply Newton's first law to the keys of the keyboard that are not hit by the fingers of the man. In fact, as no force act on the keys, they remain at rest.
- Newton's second law of motion:
"The acceleration experienced by an object is proportional to the net force exerted on the object; mathematically:

where F is the net force, m is the mass of the object, and a its acceleration"
In this case, we can apply Newton's second law to the keys of the keyboard that are hit by the man: in fact, as they are hit, they experience a downward force, and therefore they experience a downward acceleration.
"Newton's third law of motion:
"When an object A exerts a force on an object B (action force), then object B exerts an equal and opposite force on object A (reaction force)"
Here We can apply Newton's third law to the pair of objects finger-key: in fact, as the finger apply a force on the key (action force), then the key exerts a force back on the finger (reaction force), equal and opposite.
Answer:
q = 3.6 10⁵ C
Explanation:
To solve this exercise, let's use one of the consequences of Gauss's law, that all the charge on a body can be considered at its center, therefore we calculate the electric field on the surface of a sphere with the radius of the Earth
r = 6 , 37 106 m
E = k q / r²
q = E r² / k
q =
q = 4.5 10⁵ C
Now let's calculate the charge on the planet with E = 222 N / c and radius
r = 0.6 r_ Earth
r = 0.6 6.37 10⁶ = 3.822 10⁶ m
E = k q / r²
q = E r² / k
q =
q = 3.6 10⁵ C
Answer:
However, the disadvantages are:
1. Many atimes for some motion prolems, free-body diagrams has to be drawn many times so to have enough equations to solve for the unknowns. This is not the same with energy conservation principles.
2. In situations where we need to find the internal forces acting on an object, we can't truly solve such problems using free-body diagram as it captures external forces. This is not the same with energy conservation principles.
Explanation:
Often times the ideal method to use in solving motion problem related questions are mostly debated.
Energy conservation principles applies to isolated systems are useful when object changes their positions in moving upward or downward converts its potential energy due to gravity for kinetic energy, or the other way round. When energy in a system or motion remains constant that is energy is neither created nor destroyed, it can therefore be easier to calculate other unknown paramters like in the motion problem velocity, distance bearing it in mind that energy can only change from one type to another.
On the other hand, free body diagram which is a visual representation of all the forces acting on an object including their directions has so many advantages in solving motion related problems which include finding relationship between force and motion in identifying the force acting on a body.
Answer:
The mass of the solution is 120 g.
Explanation:
The mass of the solution is given by:

Where:
: is the mass of the solution
: is the mass of the solvent
: is the mass of the solute
In the solution, the solvent is the majority compound (in mass) and the solute is the minority (in mass), so the solvent is the water and the solute is sodium chloride.
Hence, the mass of the solution is:
I hope it helps you!
I don't know if you need to complete this question or do it otherwise, however, I managed to find on the Internet on several places this completion of your sentence:
<span>Electric current flows through a long rod generating thermal energy at a uniform volumetric rate of q = 2 x 10</span>⁶ W/m³.
I'm not sure whether that is the answer you were looking for, but that's what I found.