Answer:
the length of the wire is 134.62 m.
Explanation:
Given;
resistivity of the copper wire, ρ = 2.6 x 10⁻⁸ Ωm
cross-sectional area of the wire, A = 35 x 10⁻⁴ cm² = ( 35 x 10⁻⁴) x 10⁻⁴ m²
resistance of the wire, R = 10Ω
The length of the wire is calculated as follows;

Therefore, the length of the wire is 134.62 m.
Answer: The multiplication factor is 72.136 cm. This will give you the unit conversion when multiplied with 28.4 inch
Explanation:
1 inch = 2.54 cm
28.4 inches = x cm
Xcm= (28.4 inches × 2.54cm)/1 inch
X= 72.136
Answer:
Explanation:
We shall represent speed in vector form
First speed
v₁ = 1.5 cos 14 i + 1.5 sin 14 j
= 1.455 i + 0.363 j
v₂ = 4.4 cos 33 i + 4.4 sin 33 j
= 3.69 i + 2.39 j
v₂ - v₁
3.69 i + 2.39 j - 1.455 i - 0.363 j
= 2.235 i + 2.027 j
acceleration
= v₂ - v₁ / time
= ( 2.235 i + 2.027 j ) / 23
= .097 i + .088 j
force = mass x acceleration
= 398 x ( .097 i + .088 j )
= 38.6 i + 35.02 j
Magnitude of force F
F² = 38.6² + 35.02²
F = 52.11 N
Tan θ = 35.02 / 38.6
θ = 42° north of east.
We are given that a 500 kg object is hanging from a spring. To determine the amount the spring is stretched we will use Hook's law, which states the following:

Where:

Since the object is hanging the only force acting on the spring is the weight of the object. The weight of the object is:

Where:

Plugging in the values we get:

Solving the operations:

Now we solve for "x" from Hook's law by dividing both sides by "k":

Now we plug in the known values:

Solving the operations:

Therefore, the spring is stretched by 5.4 meters.
Answer:
The correct answer is "21195 N".
Explanation:
The given values are:
Tensile strength,
= 3000 MN/m²
Diameter,
= 3.0 mm
i.e.,
= 3×10⁻³ m
Now,
The maximum load will be:
= 
On substituting the values, we get
= 
= 
= 