Answer:
A solution point is (2,2)
Step-by-step explanation:
Graph the lines. If it is just greater that or less than, use dashed lines. I fits greater than or equal too, or other symbols like that, use a solid line
Use the test point (0,0). If it satisfies the inequality, shade the side of the graph with that point (you can use any test point, not just (0,0)). If it doesn't satisfy, then shade the other side
The Shaded area shared by both lines is the area of the solution
(Y-2)^2-(x-3)^2=1 I hope this helps
To find the specification limit such that only 0.5% of the bulbs will not exceed this limit we proceed as follows;
From the z-table, a z-score of -2.57 cuts off 0.005 in the left tail; given the formula for z-score
(x-μ)/σ
we shall have:
(x-5000)/50=-2.57
solving for x we get:
x-5000=-128.5
x=-128.5+5000
x=4871.50
Answer: a. 0.61
b. 0.37
c. 0.63
Step-by-step explanation:
From the question,
P(A) = 0.39 and P(B) = 0.24
P(success) + P( failure) = 1
A) What is the probability that the component does not fail the test?
Since A is the event that the component fails a particular test, the probability that the component does not fail the test will be P(success). This will be:
= 1 - P(A)
= 1 - 0.39
= 0.61
B) What is the probability that a component works perfectly well (i.e., neither displays strain nor fails the test)?
This will be the probability that the component does not fail the test minus the event that the component displays strain but does not actually fail. This will be:
= [1 - P(A)] - P(B)
= 0.61 - 0.24
= 0.37
C) What is the probability that the component either fails or shows strain in the test?
This will simply be:
= 1 - P(probability that a component works perfectly well)
= 1 - 0.37
= 0.63