Answer:
The maximum speed of sonic at the bottom of the hill is equal to 19.85m/s and the spring constant of the spring is equal to (497.4xmass of sonic) N/m
Energy approach has been used to sole the problem.
The points of interest for the analysis of the problem are point 1 the top of the hill and point 2 the bottom of the hill just before hitting the spring
The maximum velocity of sonic is independent of the his mass or the geometry. It is only depends on the vertical distance involved
Explanation:
The step by step solution to the problem can be found in the attachment below. The principle of energy conservation has been applied to solve the problem. This means that if energy disappears in one form it will appear in another.
As in this problem, the potential and kinetic energy at the top of the hill were converted to only kinetic energy at the bottom of the hill. This kinetic energy too got converted into elastic potential energy .
x = compression of the spring = 0.89
C. element only one substance
A. attract each other.
The Law of Universal Gravitation discusses the phenomenon of gravity. Remember that gravity is the force that keeps us on Earth; the Earth pulls us down, and our bodies pull back. Gravity is the force of attraction, so the correct answer is a).
Answer:
Weight is what you get when a certain amount of gravity is acting on that mass, and something, like the surface of a planet, is resisting that action. In space, when falling freely, there's nothing resisting the pull of gravity so weight disappears. Mass however stays.
hope this helps u
Explanation:
Answer: 585 J
Explanation:
We can calculate the work done during segment A by using the work-energy theorem, which states that the work done is equal to the gain in kinetic energy of the object:

where Kf is the final kinetic energy and Ki the initial kinetic energy. The initial kinetic energy is zero (because the initial velocity is 0), while the final kinetic energy is

The mass is m=1.3 kg, while the final velocity is v=30 m/s, so the work done is:
