This would be force. Acceleration is increasing the speed in an object and velocity is how fast an object is going. Also, inertia basically says that an object will stay at rest or in motion unless an outside force acts on it. So, for example, a ball will stay in the air unless gravity acts on it and pulls it down. By definition, force is any action, unopposed (or by itself without any other forces that would do the opposite) will change the motion of an object, so this definitely makes the most sense for the question. Hope this helps!
Answer:

Explanation:
a) Fundamental frequency
A harmonic is an integral multiple of the fundamental frequency.


b) Wave speed
(i) Calculate the wavelength
In a fundamental vibration, the length of the string is half the wavelength.

(b) Calculate the speed
s



Answer:
The shortest braking distance is 35.8 m
Explanation:
To solve this problem we must use Newton's second law applied to the boxes, on the vertical axis we have the norm up and the weight vertically down
On the horizontal axis we fear the force of friction (fr) that opposes the movement and acceleration of the train, write the equation for each axis
Y axis
N- W = 0
N = W = mg
X axis
-Fr = m a
-μ N = m a
-μ mg = ma
a = μ g
a = - 0.32 9.8
a = - 3.14 m/s²
We calculate the distance using the kinematics equations
Vf² = Vo² + 2 a x
x = (Vf² - Vo²) / 2 a
When the train stops the speed is zero (Vf = 0)
Vo = 54 km/h (1000m/1km) (1 h/3600s)= 15 m/s
x = ( 0 - 15²) / 2 (-3.14)
x= 35.8 m
The shortest braking distance is 35.8 m
The fourth dimension is technically time. the fourth dimension that you are talking about is actually impossible to comprehend.