Answer:

Explanation:
Take at look to the picture I attached you, using Kirchhoff's current law we get:

This is a separable first order differential equation, let's solve it step by step:
Express the equation this way:

integrate both sides, the left side will be integrated from an initial voltage v to a final voltage V, and the right side from an initial time 0 to a final time t:

Evaluating the integrals:

natural logarithm to both sides in order to isolate V:

Where the term RC is called time constant and is given by:

Answer: 5.5m/s
Explanation:
vf=vi+at
vf= 4.0m/s + (0.50m/s^2)(3.0s)
Answer:
<h2>
128.61 Watts</h2>
Explanation:
Average power done by the torque is expressed as the ratio of the workdone by the toque to time.
Power = Workdone by torque/time
Workdone by the torque =
= 
I is the rotational inertia = 16kgm²



To get the angular acceleration, we will use the formula;


Workdone by the torque = 16 * 1.28 * 12.56
Workdone by the torque = 257.23 Joules
Average power done by the torque = Workdone by torque/time
= 257.23/2.0
= 128.61 Watts
Answer:
A. I and V
Explanation:
According to Le Chatelier's Principle, increasing the product side will cause the equilibrium to shift back towards the reactant side, so I is true. By the same principle, II is false.
For gases, decreasing the pressure will cause the equilibrium to shift towards the side with higher number of moles. So V is true.
The reaction is endothermic, so increasing the temperature will shift the equilibrium to the products, so IV is false. And adding a catalyst has no effect on the equilibrium, so III is false.