Answer:
The time constant is 
Explanation:
From the question we are told that
the time take to charge is 
The mathematically representation for voltage potential of a capacitor at different time is

Where
is the time constant
is the potential of the capacitor when it is full
So the capacitor potential will be 100% when it is full thus
100% = 1
and from the question we are told that the at the given time the potential of the capacitor is 85% = 0.85 of its final potential so
V = 0.85
Hence



The velocity of the pitcher at the given mass is 0.1 m/s.
The given parameters:
- <em>Mass of the pitcher, m₁ = 50 kg</em>
- <em>Mass of the baseball, m₂ = 0.15 kg</em>
- <em>Velocity of the ball, u₂ = 35 m/s</em>
<em />
Let the velocity of the pitcher = u₁
Apply the principle of conservation of linear momentum to determine the velocity of the pitcher as shown below;
m₁u₁ = m₂u₂

Thus, the velocity of the pitcher at the given mass is 0.1 m/s.
Learn more about conservation of linear momentum here: brainly.com/question/13589460
This had to do with gain power and trade inequality business
Answer:
<em>Its speed will be 280 m/s</em>
Explanation:
<u>Constant Acceleration Motion</u>
It's a type of motion in which the speed of an object changes by an equal amount in every equal period of time.
If a is the constant acceleration, vo the initial speed, vf the final speed, and t the time, vf can be calculated as:

The object accelerates from rest (vo=0) at a constant acceleration of
. The final speed at t=35 seconds is:


Its speed will be 280 m/s
<em>1</em><em>.</em><em>259ms^2</em>
Explanation:
since, WORK DONE = FORCE*DISTANCE
AND, FORCE=MASS*ACCELERATION
SO, THE WORK DONE BECOMES=MASS*ACCELERATION*DISTANCE
ACCELERATION=WORK/(MASS*DISTANCE)
AND, WORK=686J
MASS=227kg
DISTANCE=2.4m
THEREFORE, ACCELERATION=686/(227*2.4)
=686/544.8
=1.259ms^2