You need to set their position functions equal to one another and so for the time t when that is true. That is when the tiger and the deer are in the same place meaning the tiger catches the dear
Xdear= 2t+15 deer position function.
(I integrated the velocity function )
To get the Tigers position function you must integrate the acceleration twice. This becomes
Xtiger=t^2
Now t^2=2t+15
Time t is when the tiger catches the deer
t^2-2t-15=0
(t-5)(t+3)=0 factored
t=5s is the answer you use (t=-3 is a meaningless solution)
Answer:
B'= 3.333 B
Explanation:
Lets take
Initial area = A
Magnetic field = B
The area after compression
A'=0.3 A
Magnetic field = B'
We know that flux ,Ф
Ф = B A
Given that flux is constant so
B A = B' A'
B A=B' x 0.3 A
B'= 3.333 B
It means that magnetic field will increase.
Explanation:
a. Average speed = distance / time
= 100 m / 70 s
= 1.43 m/s
b. Average displacement = displacement / time
= 0 m / 70 s
= 0 m/s
Distance is the length of the path traveled. Displacement is the difference between the final position and initial position.
Answer:
14cm
Explanation:
Mass per gram of the piece of wire;
2g of the wire is found in 1m
Since
100cm = 1m;
So;
100cm of the wire contains 2g of the wire
To provide 0.28g
Since;
2g of wire is made up of 100cm
0.28g of wire will be contained in
= 14cm
14cm of the wire will contain 0.28g
Answer:
30
Explanation:
Assuming the velocity is 3π radians <em>per second</em>, the top will spin through an angle of ...
(3π radians/s)(20 s) = 60π radians
Since each revolution is 2π radians, that is ...
(60π radians)/(2π radians/revolution) = 30 revolutions