Answer:
262 kN/C
Explanation:
If the electrons is moving parallel, thus it has a retiline movement, and because the velocity is varing, it's a retiline variated movement. Thus, the acceleration can be calculated by:
v² = v0² + 2aΔS
Where v0 is the initial velocity (2.0x10⁷ m/s), v is the final velocity (4.0x10⁷ m/s), and ΔS is the distance (1.3 cm = 0.013 m), so:
(4.0x10⁷)² = (2.0x10⁷)² + 2*a*0.013
16x10¹⁴ = 4x10¹⁴ + 0.026a
0.026a = 12x10¹⁴
a = 4.61x10¹⁶ m/s²
The electric force due to the electric field (E) is:
F = Eq
Where q is the charge of the electron (-1.602x10⁻¹⁹C). By Newton's second law:
F = m*a
Where m is the mass, so:
E*q = m*a
The mass of one electrons is 9.1x10⁻³¹ kg, thus, the module of electric field strenght (without the minus signal of the electron charge) is:
E*(1.602x10⁻¹⁹) = 9.1x10⁻³¹ * 4.61x10¹⁶
E = 261,866.42 N/C
E = 262 kN/C