<span> The meteor accelerates after it is brought into earths force field
</span>
Answer:
14,300 lines per cm
Explanation:
Answer:
14,300 cm per line
Explanation:
λ400 nm to 400nm
We can find the maximum number of lines per centimeter, which is reciprocal of the least distance separating two adjacent slits, using the following equation.
mλ = dsin (θ)
In this equation,
m is the order of diffraction.
λ is the wavelength of the incident light.
d is the distance separating the centers of the two slits.
θ is the angle at which the mth order would diffract.
To find the least separation that allows the observation of one complete order of spectrum of the visible region, we use the maximum wavelength of the visible region is 700 nm.
d = mλ / sin (θ)
As we want the distance d to be the smallest then sin (θ) must be the greatest, and the greatest value of the sin (θ) is 1. For that we also use the longest wavelength because using the smallest wavelength, the longest wavelength would not be diffracted.
d = mλ / sin (θ)
d = 1 x 700nm / 1
= 700 nm
So, the least separation that would allow for the possibility of observing complete first order of the visible region spectra is 700 nm, and knowing the least separation we can find the maximum number of lines per cm, which is the reciprocal of the number of lines per cm.
n = 1/d
= 1 / 700 x 
= 1, 430,000 lines per m
= 14,300 lines per cm
<u>The maximum number of lines per cm, that would allow for the observation of the complete first order visible spectra.</u>
Answer:

Explanation:
Speed is the rate of motion and can be found by dividing the distance by the time.

The distance covered is 56 meters and the time taken is 4 seconds.

Substitute the values into the formula.

Divide.

The speed of the car is <u>14 meters per second</u>
Answer: It would increase.
Explanation:
The equation for determining the force of the gravitational pull between any two objects is:

Where G is the universal gravitational constant, m1 is the mass of one body, m2 is the mass of the other body, and r^2 is the distance between the two objects' centers squared.
Assuming the Earth's mass but not its diameter increased, in the equation above m1 (the term usually indicative of the object of larger mass) would increase, while the r^2 would not.
Thus, it goes without saying that, with some simple reasoning about fractions, an increasing numerator over a constant denominator would result in a larger number to multiply by G, thus also meaning a larger gravitational strength between Earth and whatever other object is of interest.
<span>The two neighboring planets with the greatest distance between them is Neptune and Uranus. This happens when they are at the opposite sides of the Sun at approximately. They are 4500 million miles away from each other.</span>