1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
iren [92.7K]
3 years ago
6

One of the dangers of tornados and hurricanes is the rapid drop in air pressure that is associated with such storms. Assume that

the air pressure inside of a sealed house is 1.02 atm when a hurricane hits. The hurricane rapidly decreases the external air pressure to 0.910 atm. What net outward force is exerted on a square window of the house that is 2.03 m on each side?
Physics
1 answer:
Rufina [12.5K]3 years ago
5 0

Answer:

45930.52N

Explanation:

Net force = (internal pressure - external pressure)× area of window

Net force = (1.02 - 0.910)atm × 2.03m × 2.03m = 0.11atm × 4.1209m^2 = 0.11 × 101325N/m^2 × 4.1209m^2 = 45930.52N

You might be interested in
Date: 12-3-21<br> 4.<br> The momentum of a 5-kilogram object moving at<br> 6 meters per second is
ASHA 777 [7]

Answer

30 kg . m/sec

Explanation:

mark me as brainliest!

5 0
2 years ago
Read 2 more answers
A freight train has a mass of [02] kg. The wheels of the locomotive push back on the tracks with a constant net force of 7.50 ×
otez555 [7]

Answer:

t = 300.3 seconds

Explanation:

Given that,

The mass of a freight train, m=1.01\times 10^7\ kg

Force applied on the tracks, F=7.5\times 10^5\ N

Initial speed, u = 0

Final speed, v = 80 km/h = 22.3 m/s

We need to find the time taken by it to increase the speed of the train from rest.

The force acting on it is given by :

F = ma

or

F=\dfrac{m(v-u)}{t}\\\\t=\dfrac{m(v-u)}{F}\\\\t=\dfrac{1.01\times 10^7\times (22.3-0)}{7.5\times 10^5}\\\\t=300.3\ s

So, the required time is 300.3 seconds.

4 0
3 years ago
How does the law of conservation of energy apply to machinesBased on the law of conservation of energy, how can we reasonably im
SIZIF [17.4K]

Answer:

According,to the law of conservation of energy,the amount of energy in a closed system always stay constant. ... So,the amount of work output and other transformed energy is equal to the amount of energy inputs. • In this way,the conservation of energy is fulfilled by the machines.

8 0
3 years ago
What is the potential difference across a parallel-plate capacitor whose plates are separated by a distance of 4.0 mm where each
suter [353]

The potential difference across the parallel plate capacitor is 2.26 millivolts

<h3>Capacitance of a parallel plate capacitor</h3>

The capacitance of the parallel plate capacitor is given by C = ε₀A/d where

  • ε₀ = permittivity of free space = 8.854 × 10⁻¹² F/m,
  • A = area of plates and
  • d = distance between plates = 4.0 mm = 4.0 × 10⁻³ m.

<h3>Charge on plates</h3>

Also, the surface charge on the capacitor Q = σA where

  • σ = charge density = 5.0 pC/m² = 5.0 × 10⁻¹² C/m² and
  • a = area of plates.

<h3>The potential difference across the parallel plate capacitor</h3>

The potential difference across the parallel plate capacitor is V = Q/C

= σA ÷ ε₀A/d

= σd/ε₀

Substituting the values of the variables into the equation, we have

V = σd/ε₀

V = 5.0 × 10⁻¹² C/m² × 4.0 × 10⁻³ m/8.854 × 10⁻¹² F/m

V = 20.0 C/m × 10⁻³/8.854 F/m

V = 2.26 × 10⁻³ Volts

V = 2.26 millivolts

So, the potential difference across the parallel plate capacitor is 2.26 millivolts

Learn more about potential difference across parallel plate capacitor here:

brainly.com/question/12993474

7 0
2 years ago
Convert 3402kgm/s to 20000Newtons
oee [108]

The 3,402 has units of kg-m/s.  That's momentum.  The 20,000 has units of Newtons.  That's force.  Momentum and force are different physical things, and you can't convert them from one to the other.

The best I can do for you is something like this:

Let's say you have a moving object with 3,402 kg-m/s of momentum, and you want to STOP it completely.  You want to stand in front of it and push back on it, hard enough and for long enough to CHANGE its momentum from 3,402 kg-m/s to zero.

Also ... there's a limit to how hard you can push.  The most force you can exert is 20,000 Newtons.

The amount you'll change its momentum is called the <u><em>impulse</em></u> you give it.  The quantity of impulse is (force) x (length of time you push on it).

So you need to keep pushing it back for (T seconds) long enough so that

(20,000 Newtons of force) x (T seconds) = 3,402 kg-m/s of momentum .

Divide each side of that equation by (20,000 Newtons). Then it says:

(T seconds) = (3,402 kg-m/s) / (20,000 Newtons)

<em>T = 0.1701 second</em>

And that's how you provide just enough impulse to stop the flying object ... push on it with 20,000 Newtons of force for exactly 0.1701 second, and it loses all its momentum and falls out of the air onto the ground at your feet.

This story is the closest I can come to anything that looks like "convert"ing momentum into force.

3 0
3 years ago
Other questions:
  • Our eyes can see the thermal radiation that our bodies radiate. T or F
    11·1 answer
  • Which example is a naturally occurring magnet
    9·1 answer
  • the gravitational force between two objects is 1600 and what will be the gravitational force between the objects if the distance
    15·1 answer
  • Since sinusoidal waves are cyclical, a particular phase difference between two waves is identical to that phase difference plus
    6·1 answer
  • A small ball is attached to one end of a massless, rigid rod. The ball and the rod revolve in a horizontal circle with the other
    7·1 answer
  • A 3.8 kg ball is rolling eastward across a horizontal,
    14·1 answer
  • Infrared and ultraviolet waves have different frequencies.
    8·1 answer
  • The figure(Figure 1) shows the angular-velocity-versus-time graph for a particle moving in a circle, starting from θ0=0 rad at t
    12·1 answer
  • A ball is thrown up with a vertical velocity of 15 m/s and a horizontal velocity of 50 m/s. Calculate how many seconds it will t
    10·1 answer
  • If the volume of the cylinder is to be calculated, what would be the total standard deviation of the volume?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!