ANSWER:
IV, Type of dish detergent. DV, height of foam. CV, type of container, amount of water in container, temperature of water, time the container is agitated.
Explanation:
Independent variable(IV)- what you change during the experiment.
dependent variable(DV)- what you're measuring during an experiment. The dependent variable is DEPENDENT because it's results DEPEND on the independent variable at play.
Constant variables(CV)- things that do not change in order to isolate the tested variables as much as possible.
If an experiment is conducted such that an applied force is exerted on an object, a student could use the graph to determine the net work done on the object.
The graph of the net force exerted on the object as a function of the object’s distance traveled is attached below.
- A student could use the graph to determine the net work done on the object by Calculating the area bound by the line of best fit and the horizontal axis from 0m to 5m
For more information on work done, visit
brainly.com/subject/physics
Answer:
0.6kg
Explanation:
the unknown here is the mass of the second block
applying the law of the conservation of momentum
m₁v₁ + m₂v₂ = (m₁ + m₂) v₃
where m₁=mass of first block=2.2kg
m₂=mass of colliding block= ?
v₁= velocity of first block=1.2m/s
v₂=velocity of colliding block=4.0m/s
v₃= final velocity of combined block=1.8m/s
applying the formula above
(2.2 × 1.2) + (m₂ × 4) = (2.2 + m₂) × 1.8
2.64 + 4m₂ = 3.96 + 1.8m₂
collecting like terms
4m₂ - 1.8m₂ = 3.96 - 2.64
2.2m₂=1.32
divide both sides by 2.2
m₂= 0.6kg
Answer:
Bouyancy
Explanation:
Bouyancy occurs when the upthrust exerted on an object is equal to the weight of object displaced. It is mostly applicable to low density objects for example balloon. When balloon is displaced in water, it floats. This is due to the effect of the upthrust acting on the balloon which allows the balloon to float and which is opposite the weight.
Note that the weight acts downwards the object while the upthrust always acts opposite (upward)
More cool stars produce much of their light in the red part of the spectrum, so you see them, and bam, the color red. More hot stars, however, produce much more of their light in the green and or yellow spectrums, with much more tinier amounts of red / blue. This balance of the colors, your eye, sees simply as white. The more hot something is, the greater frequency of radiation it produces! Blue light has a higher frequency than red light, so the stars that glow red are cooler, than the stars that glow blue. :)
Hope this helped!