The salt makes it rise and
Electronic configuration: The distribution or arrangement of electrons of a molecule or an atom in molecular or atomic orbitals.
Ground state electron configuration: The distribution of electrons of an atom or molecule around the nucleus with lower levels of energy.
Now,
stands for Ruthenium with atomic number 44. It is a metal and thus, has ability to lose electrons and, becomes positively charged ion.
One can write the electronic configuration with the help of atomic number and Afbau principle, Pauli exclusion principle etc.
Ground electronic Configuration is as follows:

Soft Hand notation: ![[Kr]4d^{7}5s^{1}](https://tex.z-dn.net/?f=%5BKr%5D4d%5E%7B7%7D5s%5E%7B1%7D)
Now, when ruthenium loses two electrons then it becomes
, thus electron configuration becomes
Soft Hand notation: ![[Kr]4d^{6}](https://tex.z-dn.net/?f=%5BKr%5D4d%5E%7B6%7D)
The ground state electronic configuration of Ruthenium is
and when it loses two electrons, then electronic configuration becomes
(
)
Explanation:
2H2(g) + O2(g) → 2H2O(l )
Answer:
c and d are correct
Explanation:
In A, false because in Valence Electrons, the more the valences, the more stable an atom is.
In B, false because atoms cannot readily gain or lose valence electrons as the number of valence electrons is determined by the column they are in.
In C, true because the more the valence electrons, the more the stability of an atom.
In D, true as electron placing is important and the reactivity of an atom is important.
So C and D are true!
When the temperature increases, the kinetic energy of the particles increase this inturn makes them vibrate