<h3>
Answer:</h3>
Initial temperature is 243.59°C
<h3>
Explanation:</h3>
The quantity of heat is calculated by multiplying the mass of a substance by its specific heat capacity and change in temperature.
That is; Q = m×c×ΔT
In this case;
Quantity of heat = 560 J
Mass of the Sample of Zinc = 10 g
Final temperature = 100°C
We are required to determine the initial temperature;
This can be done by replacing the known variables in the formula of finding quantity of heat,
Specific heat capacity, c, of Zinc = 0.39 J/g.°C
Therefore,
560 J = 10 g × 0.39 J/g°C × ΔT
ΔT = 560 J ÷ (3.9 J/°C)
= 143.59°C
But, since the sample of Zinc lost heat then the temperature change will have a negative value.
ΔT = -143.59°C
Then,
ΔT = T(final) - T(initial)
Therefore,
T(initial) = T(final) - ΔT
= 100°C - (-143.59°C)
= 243.59°C
Hence, the initial temperature of zinc sample is 243.59°C
Answer:
Following are the responses to this question:
Explanation:
They can measure the spontaneity of the reaction with the form,
Substituting the values of
in the above expression information mostly on the playfulness of the reaction would be given to us from the expression above. This reaction is spontaneous if the price of
is negative, and if it is positive the response is not random. At equilibrium, the values of
are 0.
Answer:
Chemical bonds are how atoms, and even molecules join together.
Explanation:
There are two main types of primary chemical bonds. While secondary links relate to molecules, primary ties are atom to atom. This answer explains basic primary bonds only.
One must comprehend what a valence shell is before I proceed. The outer electron orbital of an atom is known as the valence shell. Most of the time (except from hydrogen), atoms desire to have 8 electrons in their valence shell, thus they form bonds with other atoms to accomplish this.
<em>All bonds result in a new chemically different molecule. Now, the two types are:</em>
- Covalent: When two atoms combine their electrons to fill their valence shells. The atoms are joined together by this "sharing."
- Ionic: When one atom <em>transfers</em> an electron to another atom in order to fulfill the valence electron requirement. Because electrons have a negative charge, the atom that <em>produced </em>them gains a positive charge as a result of losing its negative charge. The atom that received the electron therefore acquires a negative charge. Because opposing charges attract, it seems sense that the charged atoms bind as a result.