Answer:
1.63
Explanation:
If you have the following options:
<u>A. 1.63</u>
B. 1.50
C. 1.49
D. 1.33
E. 1.02
Answer:
![\vec{E} = \frac{\lambda}{2\pi\epsilon_0}[\frac{1}{y}(\^y) - \frac{1}{x}(\^x)]](https://tex.z-dn.net/?f=%5Cvec%7BE%7D%20%3D%20%5Cfrac%7B%5Clambda%7D%7B2%5Cpi%5Cepsilon_0%7D%5B%5Cfrac%7B1%7D%7By%7D%28%5C%5Ey%29%20-%20%5Cfrac%7B1%7D%7Bx%7D%28%5C%5Ex%29%5D)
Explanation:
The electric field created by an infinitely long wire can be found by Gauss' Law.

For the electric field at point (x,y), the superposition of electric fields created by both lines should be calculated. The distance 'r' for the first wire is equal to 'y', and equal to 'x' for the second wire.
![\vec{E} = \vec{E}_1 + \vec{E}_2 = \frac{\lambda}{2\pi\epsilon_0 y}(\^y) + \frac{-\lambda}{2\pi\epsilon_0 x}(\^x)\\\vec{E} = \frac{\lambda}{2\pi\epsilon_0 y}(\^y) - \frac{\lambda}{2\pi\epsilon_0 x}(\^x)\\\vec{E} = \frac{\lambda}{2\pi\epsilon_0}[\frac{1}{y}(\^y) - \frac{1}{x}(\^x)]](https://tex.z-dn.net/?f=%5Cvec%7BE%7D%20%3D%20%5Cvec%7BE%7D_1%20%2B%20%5Cvec%7BE%7D_2%20%3D%20%5Cfrac%7B%5Clambda%7D%7B2%5Cpi%5Cepsilon_0%20y%7D%28%5C%5Ey%29%20%2B%20%5Cfrac%7B-%5Clambda%7D%7B2%5Cpi%5Cepsilon_0%20x%7D%28%5C%5Ex%29%5C%5C%5Cvec%7BE%7D%20%3D%20%5Cfrac%7B%5Clambda%7D%7B2%5Cpi%5Cepsilon_0%20y%7D%28%5C%5Ey%29%20-%20%5Cfrac%7B%5Clambda%7D%7B2%5Cpi%5Cepsilon_0%20x%7D%28%5C%5Ex%29%5C%5C%5Cvec%7BE%7D%20%3D%20%5Cfrac%7B%5Clambda%7D%7B2%5Cpi%5Cepsilon_0%7D%5B%5Cfrac%7B1%7D%7By%7D%28%5C%5Ey%29%20-%20%5Cfrac%7B1%7D%7Bx%7D%28%5C%5Ex%29%5D)
By definition we have the momentum is:
P = m * v
Where,
m = mass
v = speed
Before the impact:
P1 = (0.048) * (26) = 1.248 kg * m / s
After the impact:
P2 = (0.048) * (- 17) = -0.816 Kg * m / s.
Then we have that deltaP is:
deltaP = P2-P1
deltaP = (- 0.816) - (1,248)
deltaP = -2,064 kg * m / s.
Then, by definition:
deltaP = F * delta t
Clearing F:
F = (deltaP) / (delta t)
Substituting the values
F = (- 2.064) / (1/800) = - 1651.2N
answer:
the magnitude of the average force exerted on the superball by the sidewalk is 1651.2N
Answer:
. A standing wave on a string (fixed at both ends) has a fundamental frequency f. If you quadruple the tension in the string, how can you change the length of the string so that the fundamental frequency remains the same? ... double the length.
Answer:
3.045 x 10^5 Joule per second
Explanation:
A = 1 m^2
T = 1250 degree C = 1250 + 273 = 1523 K
To = 34 degree C = 34 + 273 = 307 K
e = 1
Stefan's constant, σ = 5.67 x 10^-8 watt per meter squared per kelvin to the fourth
Use of Stefan's Boltzmann law
Energy radiated per unit time
E = σ A e (T^4 - To^4)
E = 5.67 x 10^-8 x 1 x 1 (1523^4 - 307^4)
E = 3.045 x 10^5 Joule per second