-1/3x-4/3y=2
1/3x-2/3y=4
First realize that the coefficient of x is -1/3 and 1/3 which can be eliminated with addition
Adding the two equations together gets
-6/3y=6
Simplify
-2y=6
y=-3
Substitute back into original equation
1/3x-2/3(-3)=4
1/3x+2=4
1/3x=2
x=6
Answer
x=6, y=-3
Check answer
-1/3(6)-4/3(-3) =?= 2
-2+4=2
2=2
Done!
Answer: The median value of data set B is -5.5, which is less than the median value of 3.1 in dataset A.
Step-by-step explanation:
Order the dataset from least to greatest:
-38 → -13 → -9 → -2 → 14 → 28
Then find the values that lies in the middle:
-38 → -13 → <u>-9 → -2</u> → 14 → 28
Since there are 2 values, find the average of those 2 values:

The median value = -5.5.
The median value of data set B is -5.5, which is less than the median value of 3.1 in dataset A.
Yes you do it ima was a great time and ya I wanna ya got to be like that you were just playing with him lol is that he cute too lol
if the diameter is 20, the its radius must be half that or 10.
![\textit{area of a sector of a circle}\\\\ A=\cfrac{\theta \pi r^2}{360}~~ \begin{cases} r=radius\\ \theta =\stackrel{degrees}{angle}\\[-0.5em] \hrulefill\\ A=5\pi \\ r=10 \end{cases}\implies \begin{array}{llll} 5\pi =\cfrac{\theta \pi (10)^2}{360}\implies 5\pi =\cfrac{5\pi \theta }{18} \\\\\\ \cfrac{5\pi }{5\pi }=\cfrac{\theta }{18}\implies 1=\cfrac{\theta }{18}\implies 18=\theta \end{array}](https://tex.z-dn.net/?f=%5Ctextit%7Barea%20of%20a%20sector%20of%20a%20circle%7D%5C%5C%5C%5C%20A%3D%5Ccfrac%7B%5Ctheta%20%5Cpi%20r%5E2%7D%7B360%7D~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%20%5Ctheta%20%3D%5Cstackrel%7Bdegrees%7D%7Bangle%7D%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20A%3D5%5Cpi%20%5C%5C%20r%3D10%20%5Cend%7Bcases%7D%5Cimplies%20%5Cbegin%7Barray%7D%7Bllll%7D%205%5Cpi%20%3D%5Ccfrac%7B%5Ctheta%20%5Cpi%20%2810%29%5E2%7D%7B360%7D%5Cimplies%205%5Cpi%20%3D%5Ccfrac%7B5%5Cpi%20%5Ctheta%20%7D%7B18%7D%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B5%5Cpi%20%7D%7B5%5Cpi%20%7D%3D%5Ccfrac%7B%5Ctheta%20%7D%7B18%7D%5Cimplies%201%3D%5Ccfrac%7B%5Ctheta%20%7D%7B18%7D%5Cimplies%2018%3D%5Ctheta%20%5Cend%7Barray%7D)