Answer:

Explanation:
Since the <em>rate constant</em> has units of <em>s⁻¹</em>, you can tell that the order of the reaction is 1.
Hence, the rate law is:
![r=d[A]/dt=-k[A]](https://tex.z-dn.net/?f=r%3Dd%5BA%5D%2Fdt%3D-k%5BA%5D)
Solving that differential equation yields to the well known equation for the rates of a first order chemical reaction:
![[A]=[A]_0e^{-kt}](https://tex.z-dn.net/?f=%5BA%5D%3D%5BA%5D_0e%5E%7B-kt%7D)
You know [A]₀, k, and t, thus you can calculate [A].
![[A]=0.548M\times e^{-3.6\cdot 10^{-4}/s\times99.2s}](https://tex.z-dn.net/?f=%5BA%5D%3D0.548M%5Ctimes%20e%5E%7B-3.6%5Ccdot%2010%5E%7B-4%7D%2Fs%5Ctimes99.2s%7D)
![[A]=0.529M](https://tex.z-dn.net/?f=%5BA%5D%3D0.529M)
The answer to your question is
D: Unshared Pair
Hope this helps you :))))
Answer:
The specific heat capacity of a metal is 1.31 J/g°C = C
Explanation:
A classical excersise of calorimetry to apply this formula:
Q = m . C . ΔT
177.5 J = 15 g . C (34°C - 25°C)
177.5 J = 15g . 9°C . C
177.5 J /15g . 9°C = C
1.31 J/g°C = C
Enthalpy change during the dissolution process = m c ΔT,
here, m = total mass = 475 + 125 = 600 g
c = <span>specific heat of water = 4.18 J/g °C
</span>ΔT = 7.8 - 24 = -16.2 oc (negative sign indicates that temp. has decreases)
<span>
Therefore, </span>Enthalpy change during the dissolution = 600 x 4.18 X (-16.2)
= -40630 kJ
(Negative sign indicates that process is endothermic in nature i.e. heat is taken by the system)
Thus, <span>enthalpy of dissolving of the ammonium nitrate is -40630 J/g</span>
Answer:
The main difference between the two models was about the location of the electron in an atom.
Explanation:
<u>Rutherford described that:</u>
- The electrons were outside of the nucleus.
- They were equal in number to the "positiveness" of the nucleus.
- Also, He randomly placed the negative electrons outside the nucleus.
<u>Bohr improved the Rutherford model:</u>
- Bohr placed the electrons in distinct energy levels.
- Electrons only exist in fixed orbitals (shells) and not anywhere in between.
- Each shell has a fixed energy
- Rutherford explained the nucleus of an atom, while Bohr was more into the electrons and their energy levels.