Answer
0.9516 grams / mL (50.00 has 4 sig digs.)
Remark
You have a couple of extraneous numbers there. You don't care about anything except the mass of the flask + water/alcohol mixture (88.219 grams). and the mass of the flask (40.638 grams)
Formulas
- mass water/alcohol mixture = mass of the flask with fluid - mass flask
- density = mass / volume
Solution
mass water/alcohol mixture = 88.219 - 40.638 = 47.581
- Volume = 50 mL
- Density = mass / Volume
- Density = 47.581/50
- Density = 0.95162 There are 4 sig digs so the answer should be
- 0.9516
Answer:
Why some elements are radioactive (unstable). When the atoms of an element have extra neutrons or protons it creates extra energy in the nucleus and causes the atom to become unbalanced or unstable. Whether radioactive elements can become stable and if so, how. The unstable nucleus of radioactive atoms emit radiation.
Explanation:
hope this helps
Mass of KCl= 1.08 g
<h3>Further explanation</h3>
Given
1 g of K₂CO₃
Required
Mass of KCl
Solution
Reaction
K₂CO₃ +2HCl ⇒ 2KCl +H₂O + CO₂
mol of K₂CO₃(MW=138 g/mol) :
= 1 g : 138 g/mol
= 0.00725
From the equation, mol ratio K₂CO₃ : KCl = 1 : 2, so mol KCl :
= 2/1 x mol K₂CO₃
= 2/1 x 0.00725
= 0.0145
Mass of KCl(MW=74.5 g/mol) :
= mol x MW
= 0.0145 x 74.5
= 1.08 g
Hi :)
The bottom number tells you how many protons you have in the nucleus of this element.
In Krypton-84, this means that you have 84 nucleons, where 36 of these are protons, and the remaining 48 are neutrons.
Hope this helps :)
The location of the negative charges is evenly distributed throughout the entire atom.
J. J. Tomson concluded that atoms are divisible and that the corpuscles are their building blocks.
Atoms are made up of smaller particles.
J. J. Thomson discovered the electron ( the negative charges of the atom) in 1897.
His "plum pudding" model (1904) suggested: the electrons are embedded in the positive charge and evenly distributed throughout the entire atom.
With this model, he abandoned his earlier hypothesis that the atom was composed of immaterial vortices.
Later, Rutherford demonstrate that J.J Thompson's Plum Pudding model was not accurate.
More info about Thomson’s plum pudding model: brainly.com/question/6319700
#SPJ4