Answer:
The impression of the image on the retina lasts for about 1/16th of a second after the removal of the object. If a burning stick of incense is revolved at a rate of more than sixteen revolutions per second, we see a circle of red light due to persistence of vision.
Explanation:
Answer:
Newton's second law states that the acceleration of an object is directly related to the net force and inversely related to its mass. Acceleration of an object depends on two things, force and mass.
Explanation:
here this may help.
Answer:
The change in temperature is
Explanation:
From the question we are told that
The temperature coefficient is 
The resistance of the filament is mathematically represented as
![R = R_o [1 + \alpha \Delta T]](https://tex.z-dn.net/?f=R%20%20%3D%20%20R_o%20%5B1%20%2B%20%5Calpha%20%20%5CDelta%20T%5D)
Where
is the initial resistance
Making the change in temperature the subject of the formula
![\Delta T = \frac{1}{\alpha } [\frac{R}{R_o} - 1 ]](https://tex.z-dn.net/?f=%5CDelta%20T%20%3D%20%5Cfrac%7B1%7D%7B%5Calpha%20%7D%20%5B%5Cfrac%7BR%7D%7BR_o%7D%20-%201%20%5D)
Now from ohm law

This implies that current varies inversely with current so

Substituting this we have
![\Delta T = \frac{1}{\alpha } [\frac{I_o}{I} - 1 ]](https://tex.z-dn.net/?f=%5CDelta%20T%20%20%3D%20%5Cfrac%7B1%7D%7B%5Calpha%20%7D%20%5B%5Cfrac%7BI_o%7D%7BI%7D%20-%201%20%5D)
From the question we are told that

Substituting this we have
![\Delta T = \frac{1}{\alpha } [\frac{I_o}{\frac{I_o}{8} } - 1 ]](https://tex.z-dn.net/?f=%5CDelta%20T%20%20%3D%20%5Cfrac%7B1%7D%7B%5Calpha%20%7D%20%5B%5Cfrac%7BI_o%7D%7B%5Cfrac%7BI_o%7D%7B8%7D%20%7D%20-%201%20%5D)
=> 
Answer:
2km
Explanation:
Given data
We are told that the direction traveled are
North>>>East>>>South
Hence the displacement is defined as the distance away from the initial position is
Initial position =18km
FInal position = 16km
The displacement = 18-16= 2km
Hence the displacement is 2km
<h2>
Answer:</h2>
The rate of deceleration is -0.14
<h2>
Explanation:</h2>
Using one of the equations of motion;
v = u + at
where;
v = final velocity of the boat = 0m/s (since the boat decelerates to a stop)
u = initial velocity of the boat = 25m/s
a = acceleration of the boat
t = time taken for the boat to accelerate/decelerate from u to v = 3 minutes
<em>Convert the time t = 3 minutes to seconds;</em>
=> 3 minutes = 3 x 60 seconds = 180seconds.
<em>Substitute the values of v, u, t into the equation above. We have;</em>
v = u + at
=> 0 = 25 + a(180)
=> 0 = 25 + 180a
<em>Make a the subject of the formula;</em>
=> 180a = 0 - 25
=> 180a = -25
=> a = -25/180
=> a = -0.14
The negative value of a shows that the boat is decelerating.
Therefore, the rate of deceleration of the speed boat is 0.14