Gases............<span>In gases, the atoms are much more spread out than in solids or liquids, and the atoms collide randomly with one another. A gas </span>will<span> fill any container, but if the container is not sealed, the gas </span>will<span> escape. Gas </span>can be compressed<span> much more easily than a liquid or solid</span>
Answer:
31.831 Hz.
Explanation:
<u>Given:</u>
The vertical displacement of a wave is given in generalized form as

<em>where</em>,
- A = amplitude of the displacement of the wave.
- k = wave number of the wave =

= wavelength of the wave.- x = horizontal displacement of the wave.
= angular frequency of the wave =
.- f = frequency of the wave.
- t = time at which the displacement is calculated.
On comparing the generalized equation with the given equation of the displacement of the wave, we get,

therefore,

It is the required frequency of the wave.
Answer:
Explanation:
Given
mass of wheel m=13 kg
radius of wheel=1.8 m
N=469 rev/min

t=16 s
Angular deceleration in 16 s


Moment of Inertia 
Change in kinetic energy =Work done
Change in kinetic Energy

(a)Work done =50.79 kJ
(b)Average Power

Answer:
A 1.0 min
Explanation:
The half-life of a radioisotope is defined as the time it takes for the mass of the isotope to halve compared to the initial value.
From the graph in the problem, we see that the initial mass of the isotope at time t=0 is

The half-life of the isotope is the time it takes for half the mass of the sample to decay, so it is the time t at which the mass will be halved:

We see that this occurs at t = 1.0 min, so the half-life of the isotope is exactly 1.0 min.