Answer:
As the concentration of a solute in a solution increases, the freezing point of the solution <u><em>decrease </em></u>and the vapor pressure of the solution <em><u>decrease </u></em>.
Explanation:
Depression in freezing point :

where,
=depression in freezing point =
= freezing point constant
m = molality ( moles per kg of solvent) of the solution
As we can see that from the formula that higher the molality of the solution is directly proportionate to the depression in freezing point which means that:
- If molality of the solution in high the depression in freezing point of the solution will be more.
- If molality of the solution in low the depression in freezing point of teh solution will be lower .
Relative lowering in vapor pressure of the solution is given by :

= Vapor pressure of pure solvent
= Vapor pressure of solution
= Mole fraction of solute

Vapor pressure of the solution is inversely proportional to the mole fraction of solute.
- Higher the concentration of solute more will the be solute's mole fraction and decrease in vapor pressure of the solution will be observed.
- lower the concentration of solute more will the be solute's mole fraction and increase in vapor pressure of the solution will be observed.
<span>Because they occur at an atomic level, changing the actual structure of the thing.
</span>
Answer:
The current will be increased and also for the resistance.
Explanation:
The analysis of a direct current circuit can give us the explanation we need. Using the ohm law, which tells us that the voltage is equal to the product of the current by the resistance we have:
![V=I*R\\where\\V= voltage [V]\\I= amperes [amp]\\R=resistance [ohm]\\](https://tex.z-dn.net/?f=V%3DI%2AR%5C%5Cwhere%5C%5CV%3D%20voltage%20%5BV%5D%5C%5CI%3D%20amperes%20%5Bamp%5D%5C%5CR%3Dresistance%20%5Bohm%5D%5C%5C)
The voltage is equal to the potential difference therefore we will have these expressions:

If we increase the potential differential or circuit voltage, the current will also increase and so does the resistance by increasing the voltage. If we put numerical values in the equation given before, we can confirm this fact.
The scientists should best deal with this measurement by stating that there was an error during measuring and collect further data.
A tsp
1 milliliter equals 0.202. US teaspoons. boi did that help