Answer:
The relation between the shielding and effective nuclear charge is given as

where s denote shielding
z_{eff} denote effective nuclear charge
Z - atomic number
Explanation:
shielding is referred to as the repulsion of an outermost electron to the pull of electron from valence shell. Higher the electron in valence shell higher will be the shielding effects.
Effective nuclear charge is the amount of net positive charge that valence electron has.
The relation between the shielding and the effective nuclear charge is given as
wheres denote shielding
z_{eff} denote effective nuclear charge
Z - atomic number
The law is approximately valid for real gases at sufficiently low pressures and high temperatures. The specific number of molecules in one gram-mole of a substance, defined as the molecular weight in grams, is 6.02214076 × 1023, a quantity called Avogadro's number, or the Avogadro constant.
To answer this question a balanced chemical equation is necessary. The correct equation is: N2 + 3H2 = 2NH3
From this equation, one mole of nitrogen react with 3 moles of hydrogen to give 2 moles of ammonia.
Therefore, the mole ratio of NH3 to N2 is 2:1
The molarity of the diluted solution is 0.33 M
From the question given above, the following data were obtained:
Molarity of stock solution (M₁) = 0. 5 M
Volume of stock solution (V₁) = 100 mL
Volume of diluted solution (V₂) = 100 + 50 = 150 mL
<h3>Molarity of diluted solution (M₂) =? </h3>
The molarity of the diluted solution can be obtained by using the dilution formula as illustrated below:
<h3>M₁V₁ = M₂V₂</h3>
0.5 × 100 = M₂ × 150
50 = M₂ × 150
Divide both side by 150
M₂ = 50 / 150
<h3>M₂ = 0.33 M</h3>
Therefore, the molarity of the diluted solution is 0.33 M
Learn more: brainly.com/question/24625656