Answer:
Volume occupied by Neon gas is 52.67 L
Explanation:
Using Ideal Gas Equation:
PV = nRT
where
P = pressure exerted by the gas = 57 atm
V = volume occupied = ?
n = number of moles = 115 moles
R = Ideal gas constant = 0.0821 L.atm/K.mol
(R value should be taken according to the units of Temperature,pressure, volume and mole)
T = Temperature = 45 + 273 = 318 K
(For temperature conversion from C to K add 273 to temperature:T + 273)
PV = nRT , So
Put values of T,P,n,R
V = 52.67 L
Volume occupied by 115 moles of Neon gas at 57 atm Pressure and 45 C temperature is 52.67 L
Answer : The products of the chemical reaction are,
and 
Explanation :
Balanced chemical reaction : It is defined as the reaction in which the number of atoms of individual elements present on reactant side must be equal to the product side.
When sodium bromide react with silver nitrate then it react to give sodium nitrate and silver bromide as a product.
The balanced chemical reaction will be:

The given reaction is a double-displacement reaction in which the cation of two reactants molecule exchange their places to give two different products.
The species present on the left side of the right arrow is the reactant and the species present on the right side of the right arrow is the product.
In the balanced chemical reaction,
and
are reactants.
and
are products.
Hence, the products of the chemical reaction are,
and 
Y2O3 is the molecular formula. Yttrium (III) oxide is also called yttria. It is a white substance and is air-stable. The usual application for this compound is a starting material for inorganic compounds and in material science. IT is insoluble in water and has a high melting point.
Answer:
-43.3 °C
Explanation:
To find the temperature, you need to use the Ideal Gas Law equation. The equation looks like this:
PV = nRT
In this formula,
-----> P = pressure (atm)
-----> V = volume (L)
-----> n = moles
-----> R = Ideal Gas Law constant (0.08206 atm*L/mol*K)
-----> T = temperature (K)
By plugging the given values into the equation and simplifying, you can find the temperature. After you get a temperature, you need to convert it into Celsius.
P = 2.88 atm R = 0.08206 atm*L/mol*K
V = 3.76 L T = ? K
n = 0.574 moles
PV = nRT
(2.88 atm)(3.76 L) = (0.574 moles)(0.08206 atm*L/mol*K)T
10.8288 = (0.04710244)T
230. K = T
Kelvin - 273.15 = Celsius
230 K - 273.15 = -43.3 °C