On the off chance that one of the reactants is in overabundance yet you don't know which one it is, you have to compute the hypothetical item mass for the both reactants, with a similar item, and whichever has the lower yield is the one you use to precisely depict masses/sums for the condition, since you can't have more than the non-abundance reactant can create.
Answer:
97 J
Explanation:
Step 1: Given data
- Mass of the sample (m): 12 kg
- Specific heat capacity (c): 0.231 J/kg.°C (this can also be expressed as 0.231 J/kg.K)
- Initial temperature: 45 K
Step 2: Calculate the temperature change
ΔT = 80 K - 45 K = 35 K
Step 3: Calculate the heat required (Q)
We will use the following expression.
Q = c × m × ΔT
Q = 0.231 J/kg.K × 12 kg × 35 K = 97 J
Answer:
- <u><em>butylphenyl ether.</em></u>
Explanation:
The formula of the compound is:
- CH₃ - CH₂ - CH₂ - CH₂ - O - C₆H₅
1. The functional group is of the kind R - O - R', i.e. two alkyl groups each attached to one end of the oxygen atom. That means that the compound is an ether.
2. One group attached to the oxygen group is CH₃ - CH₂ - CH₂ - CH₂ - which has 4 carbons and is named butyl group.
3. The other group attached to the oxygen atom is C₆H₅ - which is derived from ciclohexane as is known as phenyl group.
4. Using the rule of naming the subtituents in alphabetical order, you name butyl first and phenyl second, so it is <u><em>butylphenyl ether.</em></u>