The type of bonds present in the compound. and the type of structure it has and the elements that are presents and the number of moles of each element in one mole of the compound.
There are 2 moles of O stones present in 88 grams of CO2. Why? Well, we can find the amount of moles present in 88 grams of CO2 by dividing the mass by the molar mass. The mass of CO2 comes out to be 88 grams. The molar mass of CO2 comes out to be 44 grams. Because 88 is the mass of CO2 and 44 is the molar mass of CO2, we can divide 88 by 44 to identify that there are 2.0 moles of O atoms present in 88 grams of CO2.
Your final answer: There are 2.0 moles of O atoms present in 88 grams of CO2. Your final answer to this question is D, or 2.0 moles. If you need to better understand, let me know and I will gladly assist you.
Answer:
1. No 1 looks like a statement and not a question.
2.Ionic compounds are usually formed from the transfer of electrons from metals to Non metals. All others are Ionic compounds except HCl(Its a covalent compound).
3. The Formula would be K2S. Exchange of Radicals takes place. Sulphur has a -2 charge and potassium has a +1 charge. when they both exchange radicals... The compound is K2S.
4.Group 1 elements have only 1 electron in their outermost shell.
5. its charge will be +1 because it loses the 1 electron in its outermost shell.
6.Group 2 elements have 2electrons in their Valence shell.
7.Already answered. same as No 5.
8. Group 16;Also known as group 6. They have only 6 electrons in their outermost shell.
9.When they want to become stable... they acquire 2electrons to complete their octet... so they possess a -2 charge by forming an ion.
10. i)They form ions when Dissolve in solutions
ii) They are hard and brittle
iii) They have high boiling points
Answer:iron and oxygen combining to make rust. vinegar and baking soda combining to make sodium acetate, carbon dioxide and water
Explanation:
Answer:
The answers are in the explanation.
Explanation:
The energy required to convert 10g of ice at -10°C to water vapor at 120°C is obtained per stages as follows:
Increasing temperature of ice from -10°C - 0°C:
Q = S*ΔT*m
Q is energy, S specific heat of ice = 2.06J/g°C, ΔT is change in temperature = 0°C - -10°C = 10°C and m is mass of ice = 10g
Q = 2.06J/g°C*10°C*10g
Q = 206J
Change from solid to liquid:
The heat of fusion of water is 333.55J/g. That means 1g of ice requires 333.55J to be converted in liquid. 10g requires:
Q = 333.55J/g*10g
Q = 3335.5J
Increasing temperature of liquid water from 0°C - 100°C:
Q = S*ΔT*m
Q is energy, S specific heat of ice = 4.18J/g°C, ΔT is change in temperature = 100°C - 0°C = 100°C and m is mass of water = 10g
Q = 4.18J/g°C*100°C*10g
Q = 4180J
Change from liquid to gas:
The heat of vaporization of water is 2260J/g. That means 1g of liquid water requires 2260J to be converted in gas. 10g requires:
Q = 2260J/g*10g
Q = 22600J
Increasing temperature of gas water from 100°C - 120°C:
Q = S*ΔT*m
Q is energy, S specific heat of gaseous water = 1.87J/g°C, ΔT is change in temperature = 20°C and m is mass of water = 10g
Q = 1.87J/g°C*20°C*10g
Q = 374J
Total Energy:
206J + 3335.5 J + 4180J + 22600J + 374J =
30695.5J =
30.7kJ