1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kiruha [24]
3 years ago
12

The driver of a pickup truck accelerates from rest to a speed of 37 mi/hr over a horizontal distance of 215 ft with constant acc

eleration. The truck is hauling an empty 460-lb trailer with a uniform 72-lb gate hinged at O and held in the slightly tilted position by two pegs, one on each side of the trailer frame at A. Determine the maximum shearing force developed in each of the two pegs during the acceleration.
Physics
1 answer:
Alona [7]3 years ago
4 0

Answer:

Maximum shearing force developed in each of the two pegs during acceleration is 1830 lbf

Explanation:

First we will find the acceleration of pickup truck.

As, the acceleration is uniform, therefore we can use Newton's third equation of motion:

2as = V_{f}^{2}-V_{i}^{2}

First convert speed into ft/sec

1 mile/hr = 1.47 ft/sec

therefore,

37 mile/hr = 37 x 1.47 ft/sec

37 mile/hr =  54.39 ft/sec

with initial speed 0 ft/sec (starting from rest), using in equation of motion:

a = [(54.39 ft/sec)² - (0 ft/sec)²]/2(215 ft)

a = 6.88 ft/sec²

Now, the total shear force will be given by Newton's second law of motion:

F = ma

F = (460 lbm +72 lbm)(6.88 ft/sec²)

F = 3660 lbf

Now for the max shear force in each of the two pegs we divide total fore by 2:

Force in each peg = F/2 = (3660 lbf)/2

<u>Force in each peg = 1830 lbf</u>

You might be interested in
The following nuclear reaction is balanced.<br><br><br><br> True<br> False
elena-14-01-66 [18.8K]
I think its true for tht one!!

5 0
3 years ago
Read 2 more answers
A small rock is thrown straight up with initial speed v0 from the edge of the roof of a building with height H. The rock travels
Crank

Answer:

v_{avg}=\dfrac{3gH+v_0^2}{v_0+\sqrt{v_0^2+2gH} }

Explanation:

The average velocity is total displacement divided by time:

v_{avg} =\dfrac{D_{tot}}{t}

And in the case of vertical v_{avg}

v_{avg}=\dfrac{y_{tot}}{t}

where y_{tot} is the total vertical displacement of the rock.

The vertical displacement of the rock when it is thrown straight up from height H with initial velocity v_0 is given by:

y=H+v_0t-\dfrac{1}{2} gt^2

The time it takes for the rock to reach maximum height is when y'(t)=0, and it is

t=\frac{v_0}{g}

The vertical distance it would have traveled in that time is

y=H+v_0(\dfrac{v_0}{g} )-\dfrac{1}{2} g(\dfrac{v_0}{g} )^2

y_{max}=\dfrac{2gH+v_0^2}{2g}

This is the maximum height the rock reaches, and after it has reached this height the rock the starts moving downwards and eventually reaches the ground. The distance it would have traveled then would be:

y_{down}=\dfrac{2gH+v_0^2}{2g}+H

Therefore, the total displacement throughout the rock's journey is

y_{tot}=y_{max}+y_{down}

y_{tot} =\dfrac{2gH+v_0^2}{2g}+\dfrac{2gH+v_0^2}{2g}+H

\boxed{y_{tot} =\dfrac{2gH+v_0^2}{g}+H}

Now wee need to figure out the time of the journey.

We already know that the rock reaches the maximum height at

t=\dfrac{v_0}{g},

and it should take the rock the same amount of time to return to the roof, and it takes another t_0 to go from the roof of the building to the ground; therefore,

t_{tot}=2\dfrac{v_0}{g}+t_0

where t_0 is the time it takes the rock to go from the roof of the building to the ground, and it is given by

H=v_0t_0+\dfrac{1}{2}gt_0^2

we solve for t_0 using the quadratic formula and take the positive value to get:

t_0=\dfrac{-v_0+\sqrt{v_0^2+2gH}  }{g}

Therefore the total time is

t_{tot}= 2\dfrac{v_0}{g}+\dfrac{-v_0+\sqrt{v_0^2+2gH}  }{g}

\boxed{t_{tot}= \dfrac{v_0+\sqrt{v_0^2+2gH}  }{g}}

Now the average velocity is

v_{avg}=\dfrac{y_{tot}}{t}

v_{avg}=\dfrac{\frac{2gH+v_0^2}{g}+H }{\frac{v_0+\sqrt{v_0^2+2gH} }{g} }

\boxed{v_{avg}=\dfrac{3gH+v_0^2}{v_0+\sqrt{v_0^2+2gH} } }

5 0
3 years ago
The momentum of an object is proportional to its weight and speed.<br> a. true<br> b. false
Crank
It would be A.. True
4 0
4 years ago
A round object of mass 10 kg and radius 0.5 m rolls without slipping down a hill from a height of 4.5 m. If its speed at the bot
Mice21 [21]

Answer:

moment of inertia is 2.72 kg m²

Explanation:

given data

mass m = 10kg

height h = 4.5 m

radius r  = 0.5 m

speed  v = 6.5 m/s

to find out

moment of inertia

solution

we apply here conservation of energy

that is

mgh = 1/2 ×mv² + 1/2 × Iω²

here I is moment of inertia we find and

we know ω = Velocity / radius = 6.5 / 0.5 = 13

and g = 9.8

so put here all these value

10 (9.8) 4.5 = 1/2 ×(10)(6.5)² + 1/2 × I(13)²

441 = 211.25 + 1/2 × I( 169 )

I = 2.72

so moment of inertia is 2.72 kg m²

7 0
4 years ago
How can you tell that toast is not warmed up by conduction?
solmaris [256]

Answer:

Toasting in a toaster is usually considered  by (infra red) radiation. But the hot coils touch the toast so an element of heating by conduction occurs as well.

Explanation:

8 0
3 years ago
Other questions:
  • What force is required to accelerate a body with the mass of 15 kilograms at a rate of 8m/s2?
    6·1 answer
  • Which occurrence would lead you to conclude that lights are connected in a
    13·1 answer
  • What organs are involved in caring out these functions?
    13·2 answers
  • Learning Goal: To be able to calculate work done by a constant force directed at different angles relative to displacement
    9·1 answer
  • Ann and Beth are measuring mass of an object, Ann reports a mass of 6 g while Beth obtains 6.0 g what are the range of uncertain
    11·1 answer
  • Was the Big Bang a loud explosion? Why?
    13·2 answers
  • "Johnson is throwing rocks at a bug. The bug in response first flies up 117 Cm, then down 32 cm. After dodging another rocks, th
    12·1 answer
  • Can someone pls help me with this problem???
    7·1 answer
  • A space ship has four thrusters positioned on the top and bottom, and left and right as shown below. The thrusters can be operat
    7·1 answer
  • A ship is travelling due east at 30 km/hr and a boy runs across the deck
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!