Answer:3H2O + light-c3h603+302
Explanation:
Answer:
b) The star is moving away from us.
Explanation:
If an object moves toward us, the light waves it emits are compressed - the wavelength of the light will be shorter, making the light bluer. On the other hand, if an object moves away from us, the light waves are stretched, making it redder. If from laboratory measurements we know that a specific hydrogen spectral line appears at the wavelength of 121.6 nanometers (nm) and the spectrum of a particular star shows the same hydrogen line appearing at the wavelength of 121.8 nm, we can conclude that the star is moving away from npos, since the wavelength related to that star is more expanded.
I assume you mean planets eitherway interstellar dust and clouds have solid material and as well as minerals such as iron and over time solid chuncks start to fuse together and make a planet but with stars however it is different because a star has a little solid core surrounded by gasses (hydrogen and helium) to produce heat in a method called nuclear fusion so interstellar clouds contain gasses as well and solids as I previously said and form a star as well
this is from my understanding
2.04 meters distance is traveled by the sled before stopping.
Mass of the sled = m
The initial speed of the sled = 2 m/s
Coefficient of kinetic friction between sled and ice = 0.100
Let the distance the sled moves before it stops be d.
Gravity = 9.8 m/ s²
Let the initial kinetic energy sled be


The work done by the frictional force is,


Work done by frictional force= Initial kinetic energy of the sled


So, the distance traveled by the sled before stopping is




Therefore, the distance traveled by the sled before stopping is 2.04 meters.
To know more about work done, refer to the below link:
brainly.com/question/13662169
#SPJ4