A cyclist must lean into a turn to prevent tipping over in the other direction.The frictional force provides the centripetal force necessary to turn the cyclist to the left.But the frictional force also produces a clockwise torque that will cause the rider and the bicycle to tip clockwise to the right.The force is provided by the friction of the tires.
Answer:
The torque will be felt by the coil is zero
Explanation:
The torque is:

Where
μ is the magnetic moment = N * I * A, where N is the number of turns, I is the current and A is the area
A = 0.1 cm² = 1x10⁻⁵m²

If the angle between the area and the magnetic field is 0 (are in parallel), then:

Answer:
It decreases
Explanation:
The air pressure tends to be higher on the places with the lowest altitudes, and lower at the places with higher altitudes. Basically, the air pressure is the wight of the air, and since the air is denser and heavier at the lower altitudes, the air pressure is higher, while on the higher altitudes the air is less dense, thus the air pressure is lower. So in practice we can expect that the air pressure in a low valley will be higher than the air pressure at the top of higher mountain.
The potential energy of a 25 kg bicycle resting at the top of a hill 3 m high will be 735.75 J.
<h3>What is potential energy?</h3>
The potential energy is due to the virtue of the position and the height. The unit for the potential energy is the joule.
The potential energy is mainly depending upon the height of the object. when the cyclist is at the highest position, the height is maximum. Therefore, the potential energy is also maximum.
The potential energy is found as;
PE=mgh
PE=25 kg× 9.81 m/s² ×3 m
PE= 735.75 J.
Hence, the potential energy of a 25 kg bicycle resting at the top of a hill 3 m high will be 735.75 J.
To learn more about the potential energy, refer to the link;
brainly.com/question/24284560
#SPJ1